Effective forces induced by fluctuating interface: exact results.

A. Maciołek
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
Douglas Abraham and Fabian Essler, University of Oxford,

Phys. Rev. Lett. 98, 170602 (2007).

Capillary waves

- forces induced by fluctuations, both thermal and quantal, are ubiquitous in nature: from biophysics to cosmology $\rightarrow \quad$ Casimir forces
- thermal fluctuations of the interface above the roughening transition
D.G.A.L. Aarts, M. Schmidt, and H.N.W. Lekkerkerker, Science 304, 847 (2004)

- geometric limitation of the configuration of the interface manifests itself in a long range attraction

physical systems

- colloidal particles trapped at the liquid-liquid or liquid-vapour interface at coexistence by chemicophysical forces

Pickering emulsions:

- Janus sphere - bifunctional particle with different wetting properties on two hemispheres
- colloids are spatially fixed at the interface and the contact lines are pinned, they restrict the motion of the interface strongly. The phase space restriction implies:

- what is the nature of the effective forces between colloidal particles at the interface?
- effective forces induced by capillary fluctuations of the interface?

$d=2 \quad$ Ising model

$$
\mathcal{H}=-K_{1} \sum_{i, j} \sigma_{i, j} \sigma_{i+1, j}-K_{2} \sum_{i, j} \sigma_{i, j} \sigma_{i, j+1}
$$

incremental free energy of an interface resulting from pinning:

$$
\beta f^{\times}(n)=-\lim _{N, M \rightarrow \infty} \ln \frac{Z^{\times}(n \mid N, M)}{Z(N, M)}
$$

method

- column-to-column transfer matrix

$$
V\left(\left|\sigma_{i}\right\rangle_{l},\left|\sigma_{i}\right\rangle_{m}\right)=e^{-\beta E\left(\left|\sigma_{i}\right\rangle_{l},\left|\sigma_{i}\right\rangle_{m}\right)} ; \quad\left|\sigma_{i}\right\rangle=|\uparrow\rangle,|\downarrow\rangle
$$

- partition function (periodic boundary conditions in y-direction)

$$
\begin{gathered}
Z(N, M)=\operatorname{Tr}\left(V^{N}\right)=\sum_{j} \Lambda_{j}^{N} \\
\lim _{N \rightarrow \infty} \frac{1}{N} \ln Z(N, M)=\ln \left(\max \Lambda_{j}\right)
\end{gathered}
$$

- 'domain wall state method' - achieves localization of the interface up to the bulk correlation length

Diagonalization of the TM

- mapping to a theory of free fermions \rightarrow; reduction 2^{M} down to $2 M$

$$
V=\exp \left[-\frac{1}{2} \sum_{k=1}^{M} \gamma(k)\left(2 X_{k}^{\dagger} X_{k}-I\right)\right]
$$

- eigenvectors of V :
'vacuum' $|\Phi\rangle \quad X_{l}|\Phi\rangle=0$ for all l
$\Lambda_{0}=\exp \left(+\frac{1}{2} \sum_{k} \gamma(k)\right), \quad \cosh \gamma(k)=\cosh 2 K \cosh 2 K^{*}-\cos k$
'excited states' $\quad X_{l_{1}}^{\dagger} \ldots X_{l_{j}}^{\dagger}|\Phi\rangle$
- periodic BC: $e^{i M k}= \pm 1$

'Domain-wall state'

- $|k\rangle=X_{k}^{\dagger}|\Phi\rangle$ (domain walls) are associated with a wavenumber
- local one-particle states $|j\rangle$, which would be associated to a position j

$$
|m\rangle=M^{-1 / 2} \sum_{k} \exp -i k(m+1 / 2) X^{\dagger}(k)|\Phi\rangle
$$

- $|m\rangle$ localises the interface up to the bulk correlation length

$$
Z^{\times}(n \mid N, M)=\sum_{m}\langle 0| V^{N-m}|m\rangle \times\langle m| V^{2 n}|m\rangle\langle m| V^{N-n}|0\rangle
$$

Excess free energy

$$
\beta f^{\times}(n)=-\log \left[\int_{0}^{2 \pi} \frac{d \omega}{2 \pi} e^{-2 n[\gamma(\omega)-\gamma(0)]}\right], \quad N, M \rightarrow \infty
$$

- $\gamma(0) \sim \xi^{-1}$

The asymptotics for large n of this are determined by the Laplace method

$$
\beta f^{\times} \sim \log \sqrt{2 \pi \gamma^{(2)}(0) r / a_{0}}+\mathcal{O}(1)
$$

- $r=2 n a_{0}$, valid for $n \gamma^{(2)}(0) \gg 1$, i.e., $r \gg a_{0} / \gamma^{(2)}(0)$, $1 / \gamma^{(2)}(0)$ is the interface stiffness, a_{0} the lattice constant

$$
\mathcal{F}(r) \sim-\frac{k T}{2} \frac{1}{r}
$$

$d=3$

the van Beijeren BCSOS model (1977)

Proceeding in the $(1,1)$ direction, the height difference at a separation $r=2 n a_{0}$ for integer n is $\delta h=0$

$$
\frac{Z^{\times}(n)}{Z}=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta \mathcal{H}_{B C \cos } \delta(\delta h=0)}\right)=e^{-\beta f^{\times}(n)}
$$

eijeren isomorphism with the six-vertex i

e^{-K}

e^{-K}

e^{-K}

e^{-K}

1

$$
K=\beta \mathrm{J}
$$

- isotropic case - F model (Lieb 1967) Kosterlitz-Thouless roughening transition of infinite order at

$$
T_{R}=e^{-K} /\left(k_{B} \ln 2\right) \quad f_{\text {sing }}=\exp \left(-\alpha\left|T-T_{R}\right|^{-1 / 2}\right)
$$

XXZ quantum chain

- lines of arrows are labeled by eigenvalues of $2 S_{j}^{z}$ for spin -1/2

$(1,1)$ transfer direction
- XXZ Heisenberg - Ising Hamiltonian commutes with the transfer matrix of the F model in $(1,1)$ direction for
$\Delta=1-(1 / 2) e^{K}$ (McCoy and Wu 1968)

$$
\mathcal{H}_{X X Z}=J \sum_{j=1}^{M}\left[\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}\right)+\Delta S_{j}^{z} S_{j+1}^{z}\right]
$$

ground state of $\mathcal{H} \rightarrow$ maximum eigenvalue of TM

Emptiness formation probability

Proceeding in the (1,1) direction, the height difference at a separation $r=2 n a_{0}$ for integer n is

$$
\begin{gathered}
\delta h=2 \sum_{j=1}^{2 n} S_{j}^{z} \rightarrow \delta h=0 \\
\frac{Z^{\times}(n)}{Z}=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta \mathcal{H}_{x x z}} \delta(\delta h=0)\right)=\int_{0}^{\pi} \frac{d \theta}{\pi} f(\theta, 2 n)=e^{-\beta f^{\times}(n)} \\
f(\theta, 2 n)=\left\langle\exp \left(i \theta \sum_{j=1}^{2 n} S_{j}^{z}\right)\right\rangle_{\mathcal{H}_{X X Z}} .
\end{gathered}
$$

Bosonization analysis

- at large distances

$$
\mathcal{H}=\frac{1}{16 \pi} \int d x\left[v\left(\partial_{x} \Phi\right)^{2}+\frac{1}{v}\left(\partial_{t} \Phi\right)^{2}\right] .
$$

$\Phi(x) \equiv \Phi(x)+8 \pi \alpha$, from Bethe ansatz results for thermodynamics of the chain:

$$
\begin{aligned}
& \alpha=(\arccos (-\Delta) / 4 \pi)^{(1 / 2)} \quad v=\left(J a_{0} \sin \left(4 \pi \alpha^{2}\right)\right) /\left(2\left(1-4 \alpha^{2}\right)\right) \\
& S_{j}^{z} \sim \frac{a_{0}}{8 \pi \alpha} \partial_{x} \Phi(x) \\
&-A(-1)^{j} a_{0}^{1 / 8 \alpha^{2}} \sin \left(\frac{\Phi(x)}{4 \alpha}\right)+\ldots,
\end{aligned}
$$

$x=j a_{0}$ and A is a known constant

Bosonization analysis

$$
\left\langle e^{i \theta \sum_{j=1}^{n} S_{j}^{z}}\right\rangle_{\mathcal{H}} \sim A(\theta)(n c)^{(\theta / 4 \pi \alpha)^{2}}
$$

where $c^{-1} a_{0}$ is a short-distance cutoff;

$$
\begin{aligned}
f(\theta, n) & \sim \frac{A(\theta)}{2}(n c)^{-(\theta / 4 \pi \alpha)^{2}} \\
& +(-1)^{n} \frac{A(\theta-2 \pi)}{2}(n c)^{-((\theta-2 \pi) / 4 \pi \alpha)^{2}}
\end{aligned}
$$

for large n :

$$
\begin{aligned}
& e^{-\beta f^{\times}(n)} \sim \frac{\mathcal{A}}{\sqrt{\log \left(n c^{\prime}\right)}} \\
& \mathcal{F}(r) \sim-\frac{k T}{2 r \log \left(r c^{\prime} / a_{0}\right)}
\end{aligned}
$$

Summary and conclusions

- $d=2$ allows the interface to have a diffusive structure at the molecular level, ultimate test for the fluctuation effects $\rightarrow 1 / r$
- $d=3$ BCSOS model of a random surface; interface is locally sharp $\rightarrow 1 /\left(r \ln \left(r / a_{0}\right)\right)$
- agreement with the results from the continuum (Gaussian) model of the interface in contact with two extended objects Lehle, Oettel and Dietrich, Europhys. Lett. 75, 174 (2006)

