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Percolation in 2-D is deceptively easy to define.
Imagine a large square lattice of points, with bonds
between neighboring points occupied with
(independent) probability p. A given configuration
might look like this:
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The “thermodynamic” behavior depends on p.
For small p: isolated clusters.
For large p: clusters cross entire system.

At p = pc, there is a phase transition.

Conformal Field Theory applies there (with ¢ = 0), in
the continuum limit. CFT gives differential equations
whose solutions describe various quantities, for
example the crossing probability (or the density of a
cluster).

We use CFT in the upper half—plane.







At the percolation point Pe, clusters are quite ramified, 1n fact
they are fractal:
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Usetul conformal operators:

1.) ®,2)(x), which implements a change from fixed to free
boundaries at Xx.

T

2.) O(1,3)(x), which creates a cluster anchored on a free
boundary at x.

3.) ®Os2,32)(2), the “magnetization” operator, which measures
the density of clusters at z.

Dimensions: h(;2) =0, h;3= 1/3, and hz2,32)= 5/96.



For example, the density of clusters at z which connect to the
boundary 1s

73(2) X <¢3/2,3/2(z)¢3/2,3/2(2)> X y5£48

()

The magnetization operator at the image point appears
because the problem 1s 1n the half-plane [Cardy].

Here, and below, 2 is the probability of a cluster connecting
1ts arguments.




The probability of a cluster connecting x; and x> (a limit of
Cardy’s crossing probability formula):
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The probability of a cluster connecting x; and z:

11748
P(z1,2) X (¢1,3(21)P3/2,3/2(2)P3/2,3/2(Z)) X T——rC

A7)

This prediction agrees very well with computer simulations
(up to an non-universal, unspecified normalization).




The probability of a cluster connecting xi, x2 and z:

P(x1,22,2) < (¢1,3(21)d1,3(22)d3/2,3/2(2) P3/2,3/2(%))
oy~ (zg — 31) 2P F(n)

_ (z —20)(Z — 2q)
(Z —x0)(2 — 2q)

n







Because of the ¢ 3)(Xi), 2P(X1, X2, Z) satisfies a third-order

differential equation. By considering the asymptotic
behavior as x; — X2, one can 1dentify solutions physically.




It 1s useful to use
a new variable:
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Putting all this together...

P(ml,m%z) = Cl\/P(ml,m2) 7-)(2?1,2) P($2,Z)

9T/2 15/2
LT 3sAT(1/3)92

C — 1.0290268 . . .




This result 1s universal, as well as exact. Letting z go to the
real axis shows that C; 1s a (boundary) operator product
expansion coefficient. Further, this factorization holds 1n
any stmply—connected region (with the same C,).




(The formula for C; arises from the transformation
properties of certain hypergeometric functions that solve
the DE arising from conformal field theory.)

Note that our results for 2 are exact, and apply to a fluid.
We are not aware of any similar exact formulas.







We have tested this equation extensively by computer
simulation. We find C; = 1.030 £ 0.001, so the agreement 1s
excellent:
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But the question as to why this factorization
occurs remains unanswered...

More 1s possible... using the correlation function

< Q1,2)(X1) ©1,2)(X2) D(312,32(2) P312,32)(2*) >




We can calculate interval connection probabilities:

P((rra).2) o>/ Reos! 2(¢/2) [ P((a1,22), 2) oy sin/4( /2




his implies factorizations involving the interval functions

P21, 29,2) P(2) = Cy Pay, 72) P((21,72).2) ’P((a:l,mz),z)

872 1

C2=3 r(1/3)3

= 1.36893 ...




(Additionally, one may eliminate 2(X1, X2, z) and express the
interval functions in terms two— and three—point functions.)




Consider the first factorization:

Numerics show this still holds (with same Ci), but

asymptotically (for points sufficiently far apart), when x; or
X2 (or both) are off the real axis.

Numerical and theoretical evidence that this factorization
(with different Cy) for connection probabilities of Fortuin-
Kastelyn clusters 1n the critical g-state Potts models:




128x128 C ratio, Q=2 - first 25 rows




128x128 - C ratio, Q=2 - all points
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We also have numerical evidence for this factorization at the
3-D percolation point (within +£3%)




Further, in 2-D we have found that the (original) factorization
holds for any central charge c if one uses the operators

¢1,3)(x) and P1/2,0/(X):

< P(1,3)(X1) O(1.3)(X2) Pr112,0(2Z, 2%) > =

C N < dp,3(x1) Prr.3)(x2) > < d1,3)(x1) P20z, 2%) >

< ¢1.3)(X2) P20z, z%)>

Further, these operators are the only possible choice giving
this factorization. (We have no general physical
interpretation as yet.)




Finally, consider 2-D percolation again. In a rectangle with
fixed bc on the vertical ends, we define the quantities Pr(z),
Pr(z) and P1r(z) as the density of clusters that touch the left,
right, and both sides respectively, and m, be the horizontal
crossing probability. Then consider the ratio

PrLr(z)
v Pr(z)Pr(z)I1

BN
Clz) =




We find, numerically, that C(z) 1s
1. constant to within a few % everywhere 1n the rectangle
2. a function of x only (1¢ 1t 1s independent of the vertical
coordinate).

Guided by these observations, we have used CFT to show
that in a semi-infinite strip one has
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and we also have expressions for C(x) in an arbitrary
rectangle (assuming that there 1s no y-dependence).




Conclusions:

Recent results (from conformal field theory) give exact

and universal factorizations of connection probabilities

in critical 2-D percolation. These results generalize to
other 2-D systems and 3-D percolation.
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