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(independent) probability p.  A given configuration 
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The “thermodynamic” behavior depends on p.
For small p: isolated clusters.

For large p: clusters cross entire system.

At p = pc, there is a phase transition. 
Conformal Field Theory applies there (with c = 0), in 
the continuum limit.  CFT gives differential equations 

whose solutions describe various quantities, for 
example the crossing probability (or the density of a 

cluster).
We use CFT in the upper half–plane.





At the percolation point pc, clusters are quite ramified, in fact 
they are fractal:
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Useful conformal operators:

1.)  φ(1,2)(x), which implements a change from fixed to free 
boundaries at x.

2.) φ(1,3)(x), which creates a cluster anchored on a free 
boundary at x. 

3.) φ(3/2,3/2)(z), the “magnetization” operator, which measures 
the density of clusters at z.

Dimensions: h(1,2) = 0, h(1,3) = 1/3, and h(3/2,3/2) = 5/96.



The magnetization operator at the image point appears 
because the problem is in the half-plane [Cardy].

Here, and below, P is the probability of a cluster connecting 
its arguments.

For example, the density of clusters at z which connect to the 
boundary is



The probability of a cluster connecting x1 and x2 (a limit of 
Cardy’s crossing probability formula):



This prediction agrees very well with computer simulations 
(up to an non-universal, unspecified normalization).

The probability of a cluster connecting x1 and z:



The probability of a cluster connecting x1, x2 and z:





Because of the φ(1,3)(xi), P(x1, x2, z) satisfies a third-order 
differential equation.  By considering the asymptotic 

behavior as  x1 → x2, one can identify solutions physically.  



It is useful to use 
a new variable:

One solution gives



Putting all this together...



This result is universal, as well as exact.  Letting z go to the 
real axis shows that C1 is a (boundary) operator product 

expansion coefficient.  Further, this factorization holds in 
any simply–connected region (with the same C1).



(The formula for C1 arises from the transformation 
properties of certain hypergeometric functions that solve 

the DE arising from conformal field theory.)

Note that our results for P are exact, and apply to a fluid.  
We are not aware of any similar exact formulas.





We have tested this equation extensively by computer 
simulation.  We find C1 = 1.030 ± 0.001, so the agreement is 
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To test these predictions, we carried out simulations on
square lattices of sizes 255× 255, 511× 511, 1023× 1023,
and 2047× 2047 sites using bond percolation at the crit-
ical point p = 1/2, and keeping track of the wetted sites
connected to the two anchor points, positioned 3/8 and
5/8 the way up the y-axis (e. g., in the 255 × 255 case,
the two points separated by ±32 lattice spacings from
the center). All boundaries were free. We used a cluster
growth algorithm starting from either anchor point, and
if the cluster touched the other anchor point, we also
averaged that density separately. Thus, we found the
density of clusters touching either one or both anchor
points. In Fig. 1, the upper left panel shows the density
of points touching the lower anchor point, and the upper
right shows the density of clusters touching the upper an-
chor point. These densities are normalized to be one at
the anchor point. The lower left panel shows the density
of clusters touching both anchor points, normalized simi-
larly so that it is one at either anchor point. In the lower
right panel, we show the square root of the product of the
two simulated one-point densities divided by the proba-
bility that the two anchors are connected together, finally
multiplied by a constant C to make the contours agree
quantitatively with those of the lower left panel. The ef-
fective value of C is one when z is at either anchor point,
by definition. However, it changes to C = 1.030 ± 0.001
within a few lattice spacings, independent of lattice size.
We interpret C below.

We find quantitatively similar results for site percola-
tion on square and triangular lattices, and bond percola-
tion on a triangular lattice.

We made an additional run of 108 samples and com-
pared the density along the horizontal centerline (y =
1/2), and found agreement with (7) within 1%, with
slightly larger deviations at the two endpoints (bound-
aries). We find similar agreement of the simulated one
point density with (3).

Thus the factorization in (7) agrees with simulation
results, supporting our arguments for discarding the so-
lution of (6) giving rise to the φ1,5 term. We also find
numerically that this factorization holds asymptotically
(with the same value of C) when one or both anchor
points is not on the edge. (In this case the change of C
from 1 to the quoted value occurs over a number of lattice
spacings that scales with lattice size, indicating that the
rhs of (7) has an additional term.) Furthermore, CFT
calculations indicate that a similar factorization applies
to the critical Potts models as well. Hence these results
seem to apply more generally.

Note that CFT implies that the factorization in (7)
remains valid under any conformal mapping.

To understand these results better we combine (3) and
(7), which, in an obvious notation, gives

ρ2pts(z; xa, xb) =
1

D1/3

√

ρpt(z; xa)ρpt(z; xb). (8)

Now the densities in (8), (and the factor 1/D1/3), may be
understood as the probability P of a cluster that connects

FIG. 1: (color online) Simulation results for ρpt(z; y) and
ρ2pts(z; ya, yb).

the points in question (or the anchor points). Now since,
as mentioned, ψ reduces to φ on a free boundary, if we
take z → xc, (8) reduces to

〈φ(xa)φ(xb)φ(xc)〉 = (9)

C
√

〈φ(xa)φ(xb)〉〈φ(xa)φ(xc)〉〈φ(xb)φ(xc)〉,

where C is exactly the (boundary) OPE coefficient of the
term that we retained in the solution of (6). Therefore

P(z, xa, xb) = C
√

P(xa, xb)P(z, xa)P(z, xb), (10)

with C as above. Except for the square root, (10) resem-
bles the Kirkwood superposition approximation familiar
from the theory of fluids [18], which has been applied to
percolation [19]. However it should be emphasized that
(10) is both exact and universal.

Finally we consider a cluster anchored along the entire
interval x1 ≤ x ≤ x2. Arguing as above, the cluster den-
sity is now given by the four-point correlation function

ρint(z; x1, x2) = 〈φ1,2(x1)φ1,2(x2)ψ(z)ψ(z̄)〉. (11)

Proceeding as for (4), and redefining η by replacing xa →
x1 and xb → x2, gives

[

η(1 − η)2
d2

dη2
(12)

+
2

3
(1 − η)(1 − 2η)

d

dη
−

2

3
hψ η

]

F (η) = 0.

Since φ1,2 is a level-two operator (12) is second order.
The limit x2, x1 → 0 gives a single cluster anchored at

the origin. The solution of (12) goes either as F− ∼ η1/3



But the question as to why this factorization 
occurs remains unanswered...

More is possible... using the correlation function

< φ(1,2)(x1) φ(1,2)(x2) φ(3/2,3/2)(z) φ(3/2,3/2)(z*) > 



We can calculate interval connection probabilities:



This implies factorizations involving the interval functions



(Additionally, one may eliminate P(x1, x2, z) and express the 
interval functions in terms two– and three–point functions.)  



Consider the first factorization:  

Numerics show this still holds (with same C1), but 
asymptotically (for points sufficiently far apart), when x1 or 

x2 (or both) are off the real axis.

Numerical and theoretical evidence that this factorization 
(with different C1) for connection probabilities of Fortuin-

Kastelyn clusters in the critical q-state Potts models:







We also have numerical evidence for this factorization at the 
3-D percolation point (within ±3%)



Further, in 2-D we have found that the (original) factorization 
holds for any central charge c if one uses the operators 

φ(1,3)(x) and φ(1/2,0)(x):

< φ(1,3)(x1) φ(1,3)(x2) φ(1/2,0)(z, z*) > = 

C √ < φ(1,3)(x1) φ(1,3)(x2) > < φ(1,3)(x1) φ(1/2,0)(z, z*) >

<  φ(1,3)(x2) φ(1/2,0)(z, z*)>

Further, these operators are the only possible choice giving 
this factorization.  (We have no general physical 

interpretation as yet.)



Finally, consider 2-D percolation again.  In a rectangle with 
fixed bc on the vertical ends, we define the quantities PL(z), 
PR(z) and PLR(z) as the density of clusters that touch the left, 
right, and both sides respectively, and πh be the horizontal 

crossing probability.  Then consider the ratio



We find, numerically, that C(z) is
1. constant to within a few % everywhere in the rectangle
2. a function of x only (ie it is independent of the vertical 

coordinate).

Guided by these observations, we have used CFT to show 
that in a semi-infinite strip one has



and we also have expressions for C(x) in an arbitrary 
rectangle (assuming that there is no y-dependence).



Conclusions:

Recent results (from conformal field theory) give exact 
and universal factorizations of connection probabilities 
in critical 2-D percolation.  These results generalize to 

other 2-D systems and 3-D percolation.
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