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Like Mr. Jourdain in a famous Moliere play
”The would be Gentleman ”(Le Bourgeois
Gentilhome) realized that he is always
speaking by ”prose”, turns out that almost
all of us, almost always speaking about
Casimir/VdW phenomena.

Figure: Casimir phenomenon is also inexhaustible.



VdW forces and light (X-ray, neutron) scattering:
By virtue of the power-law rather than exponential decay, the
contribution of the VdW forces into various correlation functions
can be appreciable.

S(q) =
1

< ρ >

∫

d3(r − r ′) exp(iq(r − r′) < δρ(r)δρ(r ′) >

In turn S(q) is related to the second variational derivative φ of
the free energy

∆F =
1

2V

∫

φ(r − r ′)δρ(r)δρ(r ′)d3rd3r ′

and

S(q) =
T

< ρ > φ(q)



If φ = φ1 + φ2, where φ1 and φ2 are contributions of the short
range and long range (VdW) forces then

φ1 ≡ φ1(qa) ; φ2 ≡ φ2(qλ0)

where a is atomic scale, and λ0 is a characteristic wavelength
which determines ǫ dispersion. Generic O.Z. form for φ1

φ1 = A + Bq2 ; qa ≪ 1

and compressibility A

A =
1

< ρ >

∂P
∂ρ

φ2 has a more complicated and generally singular dependence
on q, and both limits qλ0 ≪ 1 and qλ0 ≫ 1 should be studied.



VdW contribution φ2 is related to the free energy variation with
respect to ǫ

∆F = − T
4π

∞
∑

m=0

ω2
m

∫

Dii(r , r ;ωm)δǫ(r , iωm)d3r

where ωm = 2πmT , and Dik satisfies
[

ǫ(r1, iωm)ω2
mδij − δis

∂2

∂r2
p

+
∂2

∂ri∂rj

]

Djs(r1, r2;ωm) =

−4πδ(r1 − r2)δis

To find ∆F one has to calculate the variation of Dii

[

∂2

∂ri∂rj
− δij

∂2

∂r2
p

+ ǫ(riωm)ω2
mδij

]

δDjs(r1, r2;ωm) =

−δǫ(r , iωm)ω2
mδijDjs(r1 − r2;ωm)



Since Dik is its Green function, the solution

δDss =
1

4π
ω2

m

∫

δǫ(r3)Dik(r3 − r2)Dik(r3 − r1)d
3r3

and in the isotropic liquid the only source of ǫ fluctuations is δρ

δǫ(iωm, r) ≡ ∂ǫ(iωm)

∂ρ
δρ(r)



Combining everything we find the VdW part of φ(q):

φ2(q) =
T

2(2π)3

∞
∑

m=0

ω4
m

∫

d3pDis(p)Dis(p − q)

(

∂ǫ

∂ρ

)2

Assumptions behind:
◮ density fluctuations are classical;
◮ electromagnetic fluctuations are quantum.

and in the isotropic liquid the only source of ǫ fluctuations is δρ

δǫ(iωm, r) ≡ ∂ǫ(iωm)

∂ρ
δρ(r)

These conditions are satisfied

~qv ≪ T ≪ ~qc

with v is sound speed, and c is speed of light.



Then one can go from summation over ω to integration:

φ2(q) =
T

2(2π)4

∫

∞

0
dω

∫

ω4Dis(p)Dis(p − q)

(

∂ǫ(iω)

∂ρ

)2

d3p

Note(!):
The integral over p diverges for large p. However, physically
space dispersion would cut off the divergence. Thus to
calculate the integral one has to consider only the residues at
the poles of the integrand.
The results:

◮ for qλ0 ≫ 1

φ2(q) = q3 π2

4

∫

∞

0
dω

(

∂ǫ

∂ρ

)2 1
ǫ2

◮ for qλ0 ≪ 1

φ2(q) = q4 ln(1/q)
23

120
π

ǫ
5/2
0

(

∂ǫ0

∂ρ

)2



Structure factor:

S(q) ≃ T
< ρ > A

1
[1 − (B/A)q2 − φ2/A]



Estimations:
◮ Deviation of ǫ from 1 and ∂ǫ/∂ρ from α/4π (α is atomic

polarizability) measures non-additivity of the VdW
interaction in a liquid;

◮ Short range contribution Bq2 ∝ (Θ/a)q2 (Θ is Debye
temperature);

φ2 ∝ ~ω0q3 ; qλ0 ≫ 1

φ2 ∝ ~ω0q2/λ0 ; qλ0 ≪ 1

For qλ0 ≫ 1 the VdW contribution dominates if

qa ≫ Θ

~ω0

(~ω0 ≃ 10 eV , Θ ≃ 0.1 eV ).
◮ For qλ0 ≪ 1 the short range and VdW contributions are of

the same order.

VdW contribution into the sound speed:

v = v0[1 − const q3a3]

(if it were + - phonon may decay into two phonons!).



Liquid Crystals:

Figure: Cartoon view of liquid crystals



VdW forces in liquid crystals:
In isotropic liquids ǫik ≡ ǫδik and all non-uniform fluctuations
yielding to the VdW forces are reduced to non-uniform density
fluctuations. In liquid crystals

ǫik = ǫ(ω)δik + ǫa(ω)ni(r)nk (r)

The equation for the Green function Dik

[

ǫil(r1, i |ω|)ω2 + (curl)2
il

]

Dil(r1, r2;ω) = 4πω2δ(r1 − r2)δik

We assume ǫa ≪ ǫ and the first variation of the free energy

δF =
1

8π2

∫

dω

∫

d3rδǫik (r , iω)Dik (r , r ;ω)

where
δǫik = ǫa(i |ω|)Nik (r) ; Nik ≡ nink



Regular perturbation theory:

Dik (r , r1) = D(0)
ik (r−r1)−

1
4π

ω2
∫

d3r2D(0)
il (r−r2)D

(0)
mk (r2−r1)δǫlm(r2)

where D(0)
ik is the Green function of the radiation in uniform

space with ǫik = ǫδik

D(0)
ik (q, ω) =

4πω2

ǫ(i |ω|)ω2 + q2

[

δik +
qiqk

ǫ(i |ω|)ω2

]



Results:
Retarded VdW, qλ0 ≪ 1

FVdW =
L

(2π)3

∫

d3q[4qiqkNilN
∗

kl − q2NilN
∗

li ]

In the real space it reads as

FVdW =
1
2

∫

d3r [8L(divn)2 − 8L(n curln)2 + 8L(n × curln)2]

where

L =
~

192π2c

∫

∞

0

ǫ2
a(iω)

ǫ3/2(iω)
ωdω



For non-retarded VdW, i.e., qλ0 ≫ 1

FVdW =
M

(2π)3

∫

d3q[2q3NikN∗

ik − 4qqiqkNilN
∗

kl

+3(qiqkqlqm/q)NilN
∗

km]

with

M =
~

2048π

∫

ǫ2
a(iω)

ǫ2(iω)
dω

It is non-local in real space

FVdW =
M

2π2

∫

d3rd3r ′
[

24
(n(r)n(r ′))2

|r − r ′|6 +

8
|r − r ′|4

∂

∂xi
(ni(r)nl(r))

∂

∂x ′

k
(nk (r ′)nl(r

′))

− 3
|r − r ′|2

∂2

∂xi∂xk
(ni(r)nl(r))

∂2

∂x ′

k ∂x ′
m

(nk (r ′)nm(r ′))
]



Speculation:
Cholesterics without molecular optical activity:

◮ If for qλ0 ≪ 1 the VdW contribution is larger than all short
range interactions, due to

FVdW =
1
2

∫

d3r [8L(divn)2 − 8L(n curln)2 + 8L(n × curln)2]

the uniform nematic state is unstable.
◮ Maximally stable structure should satisfies

divn = 0 ; n × curln = 0

conditions.
◮ Since for qλ0 ≫ 1 the energy is positively defined, -

cholesteric spiral structure with its pitch ∝ λ0.



Local orientational transitions in nematics:
Near a solid/nematic interface z = d , weak (!) short range
anchoring forces favor tangential to the interface alignment
(θ = π/2), while the VdW torques favor the orthogonal
orientation (θ = 0). The energy per unit area is

F = −1
2

A sin2 θ0 +

∫

∞

d
dz

(

1
2

U(z) sin2 θ +
1
2

K
(

dθ

dz

)2
)

where A > 0 comes from the short range anchoring, θ0 ≡ θ(d)
determines the orientation at the interface, U(z) comes from
the VdW torque (we assume for simplicity that at z → ∞ no
torque, i.e. dθ/dz → 0).



Figure: Competition between VdW torque and surface anchoring.



Stability of uniform states θ = 0 , π/2:
The equilibrium equation is

d2θ

dz2 =
U(z)

K
sin θ cos θ

and the torque balance at the interface

K
dθ

dz
|z=d = −A sin θ0 cos θ0

◮ F0 − Fπ/2 vanishes when

A = Ac ≡
∫

∞

d
U(z)dz

Roughly A ∝ S2, while U ∝ S (S is orientational order
parameter). Thus temperature variations may allow to
cross the threshold, and then Ac would correspond to the
first order phase transition.

◮ Local stability of the low A (i.e., θ = 0) phase

d2θ

dz2 =
U(z)

K
θ

has a solution z with upward curvature



Figure: Small θ solution.



Small θ phase stability:
The torque at the interface

K
dθ

dz
|z=d =

∫

∞

d
U(z)θ(z)dz

and the instability sets in when this is Aθ0. Therefore there is
another threshold

A′ =

∫

∞

d
U(z)

θ(z)

θ(d)
dz

Since θ(z) < θ(d), A′ < Ac.



High A (i.e., θ = π/2) phase stability:
For φ = π/2 − θ the same linearized equations with U → −U.
Then the solution for φ has a downward curvature, i.e.
φ(z) > φ(d), and the instability threshold

A′′ =

∫

∞

d
U(z)

φ(z)

φ(d)
dz > Ac

Figure: Small φ = π/2 − θ solution.



Results for partial tilt:
◮ In a finite range A′ < A < A′′ partial tilt occurs and the

transitions at A′ and A′′ are of second order.
◮ A′′ diverges when d decreases down to dc (can be found

numerically for U(z) ∝ z−3).
◮ For d > dc there are two transitions at A′ and A′′

◮ For d < dc there is one transition at A = A′, and at all
larger values of A the conformation is oblique.



Weak Crystallization fluctuations:
◮ The natural order parameter

φ =
ρshort

ρ

By its definition φ contains Fourier components ∝ a−1, and

< φ >≪ 1

◮ Landau functional

FL

V
=
∑

q

τ(q)

2
φ(q)φ(−q)−

∑

q1+q2+q3=0

µ(q1, q2, q3)

6
φ(q1)φ(q2)φ(q3)

+
∑

q1+q2+q3+q4=0

λ(q1, q2, q3, q4)

24
φ(q1)φ(q2)φ(q3)φ(q4)

◮ There is no linear term since φ is a short wavelength field,
thus it may not include zero Fourier component!



Since φ is a short wavelength field:
◮

τ(q) = a + b(q − q0)
2

where as usual a = α(T − T ∗), and in the main
approximation µ can be regarded as a constant, and for
the sake of simplicity we assume λ = const .

◮

F (2)
L =

∫

d3r

(

aφ2

2
+

b
8q2

0

[(∇2 + q2
0)φ]2

)

◮ According to the Gibbs prescription the probability for a
fluctuation φ

exp
(

F − FL

T

)

◮ Correlation function

G(r1, r2) =< φ(r1)φ(r2) > − < φ(r1) >< φ(r2) >

satisfies the relation

τ̂G(r , r1) −
∫

d3r2Σ(r , r2)G(r1, r2) = T δ(r − r1)



Figure: One-loop approximation for Σ

Assuming λ = const and bearing in mind µ = const these
diagrams give

Σ(r , r1) =

(

µ < φ(r) > −λ

2
< φ(r) >2 −λ

2
G(r , r)

)

δ(r − r1)



Solution to the equation for Σ:
◮ Compact notation

∆ = a +
λ

2
< φ(r) >2 +

λ

2
G(r , r)

where f̄ means the spatial average of f , i.e. its only zero
harmonic.

◮ In terms of ∆ the equation for G
(

∆ +
b

4q2
0

(∇2 + q2
0) − Θ(r)

)

G(r , r1) = T δ(r − r1)

where the function Θ contains all corrections to the
one-loop approximation and Θ = 0.



◮ Neglecting Θ

G(q) =
T

∆ + b(q − q0)2

◮ Single point correlation function G(r , r)

G(r , r) =

∫

d3q
G(q)

(2π)3 =
Tq2

0

2π(b∆)1/2

Since characteristic |q − q0| ∝ (∆/b)1/2, to provide
|q − q0| ≪ q0

∆ ≪ bq2
0

◮ The equation to solve

∆ = a +
λ

2
< φ(r) >2 +

λTq2
0

4πb1/2
∆−1/2

has two amazing features:
(i) there is solution for ∆ for an arbitrary value of a;
(ii) even at a → 0, ∆ 6= 0

∆ ∝
(

λ2T 2q4
0

b

)1/3



Casimir effect for I - SmA weak crystallization:
◮ Bulk harmonic energy

E =
ǫ

2

∫

d3q
(2π)3 [(q2 − q2

0)2 + p4
0]

where ǫ = 16q2
0/b and p4

0 = 4q2
0a/b.

◮ In real space and for film geometry the bulk energy

E =
ǫ

2

∫

0<z<d
d3r

[

(∇2φ)2 − 2q2
0(∇φ)2 + (q4

0 + p4
0)φ2

]

and the surface energy

Es =

∫

d2r
[

g0φ
2 + ggr (∇φ)2

]

[δ(z) + δ(z − d)]



Technical details:
◮ For the in-plane Fourier modes the analysis reduces to 1D

φq⊥
(z) =

∫

dxdy exp(−iq⊥r)

◮ Partition function

Zq⊥
=

∫

dudv
∫

u,v
Dφq⊥

exp[−(E+(g0+ggrq2
⊥)u2+ggrv2)/T ]

where
∫

u,v Dφq⊥
means that the functional integral should

be taken over the paths that satisfy the boundary
conditions

φq⊥
(0) = u1 ; φq⊥

(d) = u2 ; φ′

q⊥
(0) = v1 ; φ′

q⊥
(d) = v2

◮ Next step to find the path φ0 which minimizes the bulk
energy and to calculate the contributions from fluctuations
δφq⊥

Efl =
ǫ

2

∫ d

0
[|δφ′′

q⊥
|2+2(q2

⊥−q2
0)|δφ′

q⊥
|2+((q2

⊥−q2
0)2+p4

0)|δφq⊥
|2]



◮

E0 =
ǫ

2

[

φ′

0φ
′′

0 − φ0φ
′′′

0 + 2(q2
⊥ − q2

0)φ0φ
′

0

]

which can be expressed in terms of the boundary values.
◮ Borrowing results from Kleinert (1986) and Uchida (2001)

(in the limit g0 → ∞ and ggr → ∞ when the surface
partition function is 1)

Zq⊥
(d) =

exp(k+d)

2

(

sinh2(k+d) − k2
+

k2
−

sin2(k−d)

)

where

k± =

(

√

(q2
⊥
− q2

0)2 + p4
0 ± (q2

⊥ − q2
0)

)1/2

/
√

2

◮ The interaction free energy per unit area

F = −T
∫

d2q⊥

(2π)2 ln Zq⊥



Results for disjoining pressure Π = −∂F/∂d :
◮ In the mean-field critical point a = 0 (unattainable due to

fluctuations!)

Π ≃ −Tq2
0

2πd
from the region q⊥ < q0 and q0d ≪ 1.

◮ If q0d ≫ 1 (but still q⊥ < q0) the coefficient is 2 times
smaller, and if q⊥ > q0, Π scales as 1/d3 like for
conventional Casimir energy.



Even when p0 = (4q2
0∆/b)1/4 6= 0, the Π has a range of several

times π/q0:

Figure: Disjoining pressure above the mean-field critical point



Vesicle shape fluctuations:
◮ Bending (curvature) energy

Fb =
κ

2

∫

dA
(

1
R1

+
1

R2

)2

◮ Elastic (stretching) energy

Fel =
B
2

∫

dA
(

ns − n0

n0

)2

◮ Two natural constraints and notations:
V = const and N = const , and the equilibrium vesicle area
A0 = N/n0, and the area S for an ideal sphere which has
the volume V : S = 4πR2

◮ Control parameter

x =
4πR2 − A0

4πR2



Marx - Hegel philosophy:
◮ Expanding the elastic free energy over excess area

A1 ≡ A − 4πR2

Fel = 2πR2Bx2 + BxA1 +
B

8πR2 A2
1

◮ Minimization over A1:
(i) x > 0 (over-pumped ball): A1 = 0;
(ii) x < 0 (under-pumped ball): A1 > 0.

◮ In terms of surface tension (∂F/∂A1:

surface tension

x

Casimir effect

Figure: Vesicle surface tension versus x



Technical details:
◮ For nearly spherical vesicles r = R + u(θ, φ), where u ≪ R

and
Fb =

κ

2R2

∑

lm

l(l + 1)(l2 + l − 2)|ulm|2

◮ Similarly:

A1 =
1
2

∑

l>0,m

(l2 + l − 2)|ulm|2

where l = 0 and l = 1 harmonics are excluded: V = cons
condition and translational vesicle motion without shape
deformations.

◮ A1 ∝ |ulm|2, the 4-th order terms in Fel can be excluded by
H.S. transformation via auxiliary field φ which is Laplace
transformation of the partition function based on the
identity

exp
(

y4

2

)

=

∫ +i∞

−i∞
dz exp

(

zy2 +
z2

2

)



◮

exp
[

−Fel + Fb

T

]

=

∫ +∞

−∞

dφ

iφ0
exp

(

−Fφ

T

)

where φ0 ≡ T/(2BR2) is introduced for normalization.
◮

Fφ = Fb − 2πR2Bφ2 + Bφ(A1 + 4πR2x) =

−2πR2Bφ2+4πR2Bxφ+
1
2

∑

lm

(l2+l−2)
[

l(l + 1)
κ

R2 + Bφ
]

|ulm|2

◮ Fφ contains only quadratic terms over ulm. Integrating over
these variable

∏

lm

∫

dulm exp
(

−Fφ

T

)

≡ exp
(

−Feff

T

)



◮ Important that the effective energy keeps the full
information about all correlation functions of ulm, e.g.:

< |ulm|2 >=

∫ +i∞

−i∞
dφ

exp
(

−Feff

T

)

T
(l2 + l − 2)

[

κl(l + 1)/R2 + Bφ
]

◮

Feff = −2πR2Bφ2+4πR2Bxφ+
T
2

∑

l

(2l+1) ln
[

l(l + 1)
κ

BR2 + φ
]



No miracles:
◮ To proceed further on one has to have small parameters

κ

BR2 ≃ 10
a2

R2

where a is molecular scale.
◮ For |φ| ≫ κ/BR2 one can use Euler - MacLaurin

summation rule

Feff = −2πR2Bφ2 + 4πR2Bxφ + T
BR2

2κ
φ ln

e
φ

where e ≡ exp(1).
◮ With the same small parameter the ulm correlation function

can be calculated in the saddle point approximation

< |ulm|2 >=
T

(l2 + l − 2)[κl(l + 1)/R2 + Bφ]



Continuation of no miracles:
◮ The saddle point φ satisfies

φ = x +
T

8πκ
ln

1

φ

Similarity with weak-crystallization equation for ∆.
◮ < |ulm|2 > tells that

ξc =

(

κ

Bφ

)

plays a role of the correlation length.
◮ If x ≫ T/8πκ (it is the second small parameter), then the

saddle point solution is φ ≃ x .
◮ If φ ≪ T/(8πκ) (but as above φ ≫ κ/(BR2), the saddle

point solution is

φ = exp
(

8πκx
T

)

(it holds only for negative x !)



Results:
◮ Correlation length in this region

ξc = exp
(

4πκ|x |
T

)

◮ This solution is correct if x > −x0, where

x0 =
T

8πκ
ln

BR2

κ

(small parameter times logarithm of the large parameter!)
◮ In this region < A1 >= 4πR2x , and

< (δA1)
2 >= πT 2R2/8κBφ ≪ A2

1.
◮ Instead of more or less sharp phase transition (where the

energy barrier between coexisting states proportional to a
sample volume), we get a barrier of the order of T and
independent of the system size.

◮ This is not due to finite size effects but
due to fluctuations restricted by the
system finite size i.e., the Casimir effect.
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