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Hendrik Casimir, 1948

H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51 (1948) 793

[ slide borrowed from F. Capasso ]



The Casimir Force
[ H. Casimir, 1948]
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* U is infinite, so some care required



The Casimir Force
[ H. Casimir, 1948]
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(10–7 N for a=1µm, A=1cm2 )
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attractive force,

monotonic decreasing

Numerous measurements in last decade

… mainly for sphere-plate

geometry
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Sphere-plate measurements

• Van Blockland & Overbeek 1978

sphere-plate: first clear observation

• Lamoreaux 1997

  Torsional Pendulum

 first high precision experiment

• Mohideen & Roy 1998 — AFM

•Chan, et al. 2001 — MEMS

• Decca et al  2003–2004 — MEMS
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Reduction of metallic reflectivity

near plasma wavelength becomes

important at comparable separation:

lowering of the force

Experimental precision no better than 5%

 and agreement with theory cannot be claimed to better that 10%
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Measurement via MEMSMeasurement via MEMS

MMicroicroEElectrolectroMMechanicalechanicalSSystemystem

H. B. Chan, V. A. Aksyuk, R. N.

Kleinman, D. J. Bishop, and F. Capasso

Science 291 (2001), p. 1941
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Parallel Plate Measurement
[ Bressi et al., 2002 ]

Padova LNL 2002

• Plane parallel geometry

• Silicon plates with a 50 nm chromium deposit

 

• Apparatus inside Scanning Electron Microscope (SEM)

   (pressure ~ 10-5 mbar) 

• Mechanical decoupling between resonator and source

• SEM sitting on antivibration table

• System of actuators for parallelization

• Fiber-optic interferometer transducer

• SEM for final cleaning and parallelism monitoring

• Mechanical feedthroughs allow correct positioning of

  the apparatus in the electron beam

• Source approach to the cantilever using a linear PZT
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Parallel Plate Measurement
[ Bressi et al., 2002 ]

Padova LNL 2002
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…in good agreement with the

Lifshitz theory

270 nm Pd

~8 nm Pd

The force decreases due to effect

of Skin Depth…

M. Lisanti,  D. Iannnuzzi, F. Capasso, Proc. Nat. Acad. Sci. 102, 11989 (2005)

Mariangela Lisanti

Finite skin-depth effect
[ Lisanti et al, 2005 ]



Altering the Casimir Force
[ H. Casimir, 1948]
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monotonic decreasing

obtaining qualitatively different behavior:

use “exotic” materials for repulsive force
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[ Dzyaloshinskii, 1961;

Munday & Capasso,

2007 ]

…or metamaterials
[Leonhardt, 2007; Dalvit, 2008]

…or excited atoms
[Sherkunov, 2005]



Altering the Casimir Force
[ H. Casimir, 1948]
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(10–7 N for a=1µm, A=1cm2 )
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monotonic decreasing

obtaining qualitatively different behavior:

ordinary materials in complex geometries?

simplest strong-curvature

structures still give

monotonic attractive

forces



(classical)

Nanophotonics:
classical electromagnetic effects can be

greatly altered by "-scale structures

especially with many interacting scatterers 

[ D. Norris, UMN (2001) ]

optical “insulators”

trapping/guiding

light in vacuum

[ R. F. Cregan

 (1999) ]

[ Luo (2003) ]

flat “superlenses”

easy to study numerically, theory practically exact,

well-developed scalable 3d methods for arbitrary materials



Casimir Nanophotonics?

!1 !1 !3 !4 !5 ……
1956–1968:

planar multilayers
(Lifshitz formula, etc.)

…

(various perturbative/asymptotic expansions)

2006:
cylinder/plate force

(numerical)
[ Emig, Phys Rev. Lett. 96, 080403 ]

perfect metals,

infinite cylinder/plate



(excluding ad-hoc, uncontrolled

approximations)

e.g. pairwise “parallel-plate” interactions (PFA),

renormalized pairwise Casimir-Polder [ Sedmik, 2006 ]

ray optics [ Jaffe, 2004 ]

here: only “exact” numerical methods

= arbitrary accuracy given enough computing power
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How can this be problem be so hard?

non-interacting bosons — linear Maxwell-like PDEs, 

                                          continuum material models

                                          polynomial complexity

• Every current approach involves solving PDE’s

  at least 1000’s of times (usually much more!)

• Which PDE you solve makes a huge difference

— many equivalent formulations of Casimir force

… which is best-suited for numerics?

reasonably general, tractable numerical approaches demonstrated only recently

[ Emig, 2001; Gies, 2003; Rodriguez, 2007; Emig, 2008 ]



A Simplistic Approach

zero-point energy (lossless media):
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1) Compute (classical) eigenfrequencies numerically # U

any discretization

= regularization

= finite U

2) Numerical derivative # F



A Test for the Simplistic Approach

a

1d parallel plates

Discretized, finite:

!x = a / 20a

5a, periodic boundaries
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• contributions up to Nyquist $

 # need all eigenfrequencies

O(N3) work for N grid points

O(N2) storage

& with high accuracy



Real Benefits from Imaginary Time

• A reformulation:

 

!!

2
=
!!

2
D(! )d!

0

"

#
!

$

D($) = density of states = trace of Green’s function

= trace of inverse operator
1

! "! " #$
2
%($ )

• Wick rotation (contour integration): real $ % imaginary $ = iw 

real $

imag. $=iw

0 at &

=

standard numerical problem:

—inverting real-symmetric positive-definite

! "! " + w
2
#(iw)

F
 c

o
n
tr

ib
u
ti

o
n

w = Im $

non-oscillatorynon-oscillatory

integrand,integrand,

exponential cutoffexponential cutoff
e
i!r /c

r
"

e
#wr /c

r



Better complexity, but not good enough
F
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Im " = a U = trace of Green’s function

    = integral of mean energy density

       by fluctuation-dissipation theorem
                      [ e.g. Tomas, PRA (2002) ]
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= Green’s function

= E at x from current at x

= solving one linear systemN degrees of freedom,

solving Green’s = O(N) time

need at every x (N points)

= O(N2) time



Better living through stress
We only really want the force, not U, 

… so get force directly from stress tensor:

 

F = dw T !dA
surface
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stress tensor

= Green’s function

      evaluated only on the surface

        << N times

        << O(N2) work

              O(N2-1/d ) or even O(N log N)
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still a smooth,

exponentially decaying

non-oscillatory

integrand

[ analytical: Dzyaloshinskii, 1961 ] [ numerical: Rodriguez, 2007 ] 



Independent choices in numerical methods

• What PDE (or integral equation) are you solving?
— linear solver for imaginary-frequency Green’s function

— stress tensor (may have inherent advantages over U)

• What discretization (what N degrees of freedom)? 
— many standard, well-developed methods

     • finite elements & boundary elements (nonuniform mesh)

     • spectral (Fourier) methods

—exponentially fast convergence, somewhat geometry-specific

     • simple, dumb finite differences

—uniform grid, mediocre accuracy

—easy to implement proof-of-concept

• How to solve the linear equation?
— many fast iterative solvers ~ O(N) time and storage
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A more interesting test case
perfect-metal

cylinder/plate

force

dots = 

finite-difference

stress tensor

lines =

[ Emig et al.,

PRL 96,

080403 (2006) ]

specially formulated

for this geometry



A multi-body interaction in 2d

a
h

attractive force

Attractive force is a

non-monotonic function

of the sidewall separation h

ad-hoc pairwise interaction

would predict force decreasing

monotonically with h (if anything)

… although ray optics gives

qualitatively correct behavior

[ Zaheer, PRA 76, 063816 (2007) ]

[ Rodriguez, PRL 99, 080401 (2007) ]



Other realizations

Force between

gold squares

(Drude model),

a = 1µm

3d version:

[ Rodriguez, PRL 99, 080401 (2007) ]

[ Rahi, PRA 77, 030101 (2007) ]

two (3d) cylinders with

one or two sidewalls



A simple explanation

non-monotonic from competition:

TM forces decrease with h

and TE forces increase

method of images

+ +

TM (Dirichlet)

– –
images

reduce

interaction

+ +

TE (Neumann)

+ +
images

increase

interaction

[ Rahi, PRA 77, 030101 (2007) ]



A corollary effect
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cylinder-plate force depends

non-monotonically on a

[ Rahi, PRA 77, 030101 (2007) ]



What about repulsive forces,

and stable (1d) equilibria?

Theorem:

[ Kenneth, 2006 ]

in a mirror-symmetric

metal/dielectric [!(iw) " 1] structure,

the Casimir force is always attractive

… but what about

asymmetric structures?

lots of interesting

structures, e.g. with

lateral forces,

even Casimir “ratchets”

[ Emig, arXiv

cond-mat/0701641 (2007) ]



A Casimir “zipper”

(same materials,

color for illustration only)

cross-section

[ Rodriguez, Joannopoulos, & Johnson,

arXiv 0802.1494 (2008) ]



“Intuitive” pairwise-force picture

… but what if pairwise picture is totally wrong?



Exact numerical calculation
[ Rodriguez, Joannopoulos, & Johnson, arXiv 0802.1494 (2008) ]



A “True” Repulsive Force?

repulsive,

but “made from”

attractive forces

… and laterally unstable
fl

u
id

!1 !3<  !2  < 

[ Dzyaloshinskii, 1961;

Munday & Capasso,

2007 ]

repulsive force between

fluid-separated plates

with ascending !

predicted to play a role

in superfluid film wetting,

surface melting of metals…
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Casimir Casimir forces across a fluidforces across a fluid

Jeremy Munday

Jeremy N. Munday and Federico Capasso 

Physical Review A Rapid Comm. 75, 60102 (2007) 



Stable Stable Casimir EquilibriaCasimir Equilibria??

ethanol

metal

silica

impossible with electrostatics

vacuum

metal

metal
stable?

unstable since force is o(1/d)
[ Capasso,

2007 ]

50µm

[ Rodriguez, arXiv:0807.4166 ]



Stable Stable EquilibriaEquilibria

s/D = 0.25

a = (D–s)/2

= 0.096µm

perfect metal,

but realistic

silica & ethanol



Casimir Casimir TorquesTorques
via via ((  rr  )) ( (TT  ddAA))

same orientation

stable for

both attractive

and repulsive

forces??



Material dispersion
!(

iw
)

repulsive force attractive

force

force at

small/large

separation

dominated by

large/small

Im $

transition from

repulsive

to attractive

at ~ 0.02µm



Casimir Casimir TorquesTorques
via via ((  rr  )) ( (TT  ddAA))

opposite stable

orientations

for non-dispersive

(a % &)

materials

or

for a > ~ 0.1µm

static !



Casimir Torque slope at *=0

exact

PFA



A 1d Equilibrium

repulsive/

attractive

transitions

for several

material

pairs



Summary

• Using very non-planar geometries to get unusual Casimir forces

   is almost unexplored — almost every geometry never tried 

• “Exact” (no uncontrolled approximations) numerical techniques

   are finally becoming available to probe novel geometries

   by applying highly-developed, general, and scalable techniques 

   from classical computational electromagnetism.

Thanks again: A. Rodriguez, M. Ibanescu, J. D. Joannopoulos ,

D.#Iannuzzi, F. Capasso, S. Zaheer, S.#J. Rahi, R. L. Jaffe,

M.#Kardar, T. Emig, D. Dalvit

papers/preprints online: http://math.mit.edu/~stevenj


