Casimir Effects 1n Light of Quantum Field Theory

Outline

I. Introduction: Casimir effects as a form of effective field theory R.L. Jaffe
IS Eqivalent formulat 1 Oct 30, 2008

. Six equivalent formulations and lessons
KITP

— [ density of states

— [ Trace Log S-matrix

— [ Trace of Green’s function

— Feynman diagrams

— Effective action for time independent backgrounds

— Functional Integral
III. Example: Quantum solitons in renormalizable QFT’s

IV. Divergences (?) = Breakdown of Casimir idealization
Recent work on scattering approach to Casimir

effects by our group: See upcoming talk by Jamal
Rahi (and Thorsten Emig)
Emig, Graham, Kardar, Rahi, RL]J

V. Dessert: Casimir effect < Dark Energy

Collaborators
T. Emig, E. Farhi, N. Graham', P. Haagensen, M. Hertzberg', S. Johnson, M. Kardar, V.

Khemani', M. Quandt, J. Rahi’, A. Rodriguez’, M. Scandurra, A. Scardicchio?, O.
Schroeder, H. Weigel, S. Zaheer?'
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Casimir physics — an extreme form of effective field theory

I. Introduction

All physics is quantum, but sometimes...

* Separation of scales| A |and | B |with A4 < Ap

Integrate out | B |leaving E g [A]

*x Casimir = further idealization

A |is time-independent

classical
macroscopic
idealized by boundary condtions

All of which may be relaxed

* Quantum fluctuations of | B | are evaluated with
back reaction. a la Born-Oppenheimer

A

fixed, rigid, and without

* Casimir idealization fails if scales cannot be separated:

Signature of failure: Sum over quantum fluctuations of | B | diverges
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Fundamental starting point is renormalized quantum field theory

Lrenormalized [A7 B]

e Eg. QED, Scalar field in scalar background, Fermi-Dirac field in scalar
background, ...

e Note: Renormalized

* Counterterms have been introduced and adjusted to cancel loop
divergences order by order in perturbation theory.
* There are no counterterms available to cancel further divergences

This is not a QFT defined with ab initio surfaces and surface
counterterms (a la Symanzik)

* Must not encounter divergences

7 )
/D[B] exp (%Sfundamental [A7 B]) — exXp <—£ECasimir [A]>

center for N .
R. L. Jaffe KITP, Oct 30, 2008 CTP theoretical I I I I I
physics

Saturday, November 1, 2008




Classic examples and extensions

1 hem?
720d3

*x Casimir: =

% Lifshitz: Boundary = frequency dependent, but still rigid response, €(w)

/dw /D d*z(E? — B*) — /dw/d?’m(e(m,w)Ez - ﬁB%

Scalar analogues

Stgsibll [l it () A e el (R A Cales)
Index of refraction [ dw [ d3x ((8¢)?) — [ d3x (nz(a},w)éz _ V|2 — a(m)¢z>

* Casimir Polder: ECasimir [A] = VCasilnir [A] = HCasinlir[Aa A]

Casimir energy becomes effective potential for adiabatic quantization of
“slow” degrees of freedom | A

Three scale problem A > A4 > 1/T, where T is scale of adiabatic motion.
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New directions

* Variational optimization of | A |. Quantum solitons.

Farhi, Graham, Haagensen, Khemani, Quandt, Scandurra, Weigel, RLJ.
Classical background field (“soliton”): o[{a;}|(x) — Ecasimir[{e;}]

aECasimir [{ay }] L€l

0
Baj

More details below

e Orientation dependent Casimir interaction energy
Emig, Graham, Kardar, RLJ

=> spin dependent Casimir effective potential for atoms or molecules with spin

Not discussed further here!
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Limitations of Casimir idealization

* Fails for total energy of | A

% Fails for any deformation energy

* Examples of erroneous statements (including some urban legends of the field)

e ‘““Casimir energy of a sphere is...”

e ‘“‘Casimir pressure on a sphere is...”

e ‘“‘Casimir ‘force’ on a cube is repulsive...”’

* And (less controversially) When back reaction on| A

internal quantum structure of

R. L. Jaffe KITP, Oct 30, 2008
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become significant
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II. Six equivalent formulations and what they can teach us

BlA] = B (wn[A] - )

1 | Change in density of states

(e )

1
E[A] = ihc/ dkk App(A,k)

hc

oo

0

2 | Scattering matrix (‘“Krein formula’)

d
dk k o (Trlog Sp(k,A))

In both cases the k integration
contour can be rotated to the
imaginary axis

A little derivation (one dimension)
o Y(x) o sin(kx + 6(k))
e Count states in (arbitrary) box:

R. L. Jaffe KITP, Oct 30, 2008

kKL+06(k) = nm

7)id do 1 dn

T UTH
Al dn L 1d9
# R e
AL 1ds
= —— an

4 T

S 2id(k)
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3 | Trace of Green’s function

)= SO

Im Tr /dw Ga)(x, z, k) = ﬁZ(S(k—kn) = wp(k)

So
h oo
E[A] = —CImTr/ dk k /da:AG[A](ac,m,k)
27 0 A
-
4 | Feynman diagrams = "
Ga)(x, X', ) IR R o
o o o o ®
A A AAA
' r :
e O OO0
é L]
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Effective action (for time independent background)

4 ? ®
@ = Ir 1 r A
6 | Functional integral é 1
f D[B] exp %Srenormalized [A7 B] WL %E[A]

f D[B] exp %Srenormalized [B]

For example: a massless scalar field coupled to a smooth background potential, A (x)

Srenormalized [¢7 A] = /d4w ( (Bu¢)2 T gA($)¢2(33) + Cl(G)A(.’IZ) + 02(€)A2 (w))

/

€ is a cutoff (eg. fractional dimension

Renormalization counter terms

d=4—¢)
C011.nter terms canc.el lqop dlver.gfences conter for I B
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Example of application to
quantum solitons in the Standard
Model:

Standard solitons are
classical (h = 0)

Perhaps a classically
unstable background field
provides a better place for
quantum fields to fluctuate.

So Casimir energy may
stabilize a soliton.

In the Standard Model a
very heavy fermion may
have this character

R. L. Jaffe KITP, Oct 30, 2008

The Casimir Effect in Particle Physics

What happens to very heavy fermions in the

Standard Model?

Noah Graham, RLJ,

Vishesh Khemani,

Herbert Weigel, and Eddie Farhi

* Quarks and leptons get their masses from their

coupling to the Higgs condensate.

>

+ gUpw

= L= 4 [gv]YUW¥

m ~ gv

* Would seem to favor “evacuation” of Higgs

condensate near a

fermion
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Energy balance:

—| Higgs departs from

preferred constant -
value:

V(¢) >0

3Ve2 >0
Fermion is strongly n
bound in deformed
Higgs background:

fwg < m
Inconsistent! All fermion eigenfrequencies are
shifted in deformed background:
Z th ~ hwo
j7#0

Generalization of Casimir problem from boundary
condition to smooth background.

But how to calculate ¥ Aw?




Saturday, November 1, 2008

Combine Casimir Sum with Feyman diagram
methods.

Combine Feyman diagrams with counterterms
and renormalize.

Erenormavuizen (@, g, m]

Unambiguous treatment of renormalization.
Feynman graph divergences are cancelled by
divergent counterterms. Ambiguities are resolved
by imposing perturbative renormalization
conditions on low-order Green's functions.

Practical for numerical calculation. Subtracted
Casimir "“sums” are now regulator independent
and convergent.

Suitable for variational approach:

0 ERENORMALIZED

—4
5¢ g,m




Serr[6(2,T)] — T E[¢()]

E[‘ﬂ = Eqjassical T+ El-loop
+ Ecounterterm

i
T
'

X

(%)

i |
E1_100p — Evacuum 2‘52 Ehﬂwkl - |“’£ )
k

= Ecasimirl¢]
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Bcasimirl#) =% 3 ookl ~ o)

Work in the continuum: 3. — Y poundstates + [ dk

1 i | 0 |w
30l = D= X gl + [ 51009 = 00k

* where w; are bound states, |w| = \/P + m2 on the right
hand side, and p(k) is density of states.

* Assume (generalized) spherical symmetry (spherical, grand
spin, reduces to symmetric and antisymmetric as n — 1).

oK) — POk = 3 D~ 26D)
¢ o

dn 1 d
[General result: e ﬁ'd_E'Tr'n S(E)]

* &y(k) sums phase shifts for £|w(k)|.

* n - sapace dimension — suppressed on degeneracy factor Dg
and 0y.

* Identify potentially divergent terms and regularize through
the Born Approximation.

Saturday, November 1, 2008 | 14



* One-to-one correspondence between Born contributions
to density of states and Feynman diagrams

Subtract N Born approximants to regulate

N
S(k) = Fy(k) = 6,(k)— Y 60(k) So Ecas = Ecas

=1

Regulated Ecasimir is both finite and cutoff independent.

¢ In theory, because divergent diagrams have been
subtracted.

o In practice, because leading large k & large ¢ have been
subtracted.

Add back in Feynman diagrams

N
=D F™[,Al

n=1
Regulate in traditional fashion, combine with counterterms
and renormalize.

Saturday, November 1, 2008 | 15



For a case where Feynman 1- and 2-point functions are
potentially divergent as n — integer. ..

E[$(2), {g}, {m}] = Eal6(2), {g},{m}] +
[Pl + M2[g.e] — 106 — 206 c3 IV 9|2}

d

dkge(k)

1 [ o
5 (8 —m) — = [ dk (R~ m) 3 D

7 £=0

Classical energy.
Potentially divergent Feynman diagrams plus counterterms.

Regulated “Casimir” energy. Finite and smooth as n —
integer.

Subtraction of mass protects against infrared divergences
and is an identity following from Levinson's theorem.

Renormalization ¢l =0

dir? B 4 9
Wyt Tl

With standard scale and scheme dependence as expected.

Numerical calculations are convergent and quick.
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I1I.

*

Finite Casimir Effects (or) What divergences tell us!

Casimir energies are one-loop effective energies in renormalizable quantum
field theories. Therefore finite.

But ) 2h(wp[A] — w}) is horribly divergent!

And there has been a major industry of computing Casimir energies that are
superficially divergent, then regulating, and ‘‘renormalizing’’ them

(“Zeta-function regularization”,“Heat kernel expansion”...)

In brief:

If a Casimir calculation diverges it is a sign that the idealization has failed and
that the quantity in question is not protected from the high energy (frequency)
scale, A g.

The essence can be extracted from the Balian & Bloch multiple reflection
expansion for the asymptotic density of states as a function of geometry

center for
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R. Balian & C. Bloch

Geometrical expansion of the density of states Ann. Phys. (NY)
60,401 (1970)

* Attempting to address M. Kac’s problem: ‘“Can you hear the shape of a drum”’!
* Derived an integral equation (multiple reflection expansion) for cavity Green’s fn.

* Leads to asymptotic expansion for density of states

e e

|
1k7§d2—<——> ’ fdQ )
+ Cln S iR C’ R1R2

e V volume 1 quartic divergence
* S surface area 2 cubic divergence
* Ri R principal radii of curvature B quadratic divergence

What are all these divergences?

e How can one identify and compute the underlying (presumably finite) term that
contributes to the force that is buried beneath?

center for N .
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p(k)

fad D
= (Av zs+374(1 (

. =5 Chll\%dzﬁ— (R—l—R—2>
Observations:

* B& B expansion is for smoothed density of states, lim-_,, p(k + ¢7), and fails
to capture oscillatory terms at ‘“finite” k.

All smooth terms in p(k) yield divergences in the Casimir energy!

All divergences are local on the surfaces — manifest from multiple reflection
expansion — and therefore cancel out of forces and torques where surfaces are
displaced rigidly

The divergences have nothing to do with the short distance behavior of QFT.
They are exotic: eg. cubic divergence in 3 + 1 dimensions

Casimir forces come entirely from oscillatory terms in p(k) and therefore are
extremely difficult to obtain by direct computation of [ kp(k)

Total (Casimir) energy and deformation dependent quantities like the pressure
seem to diverge and do

The same phenomenon is visible in the Casimir energy density, which is finite
away from surfaces, but diverges like 1 /€3 as surface is approached

Divergences arise from trying to constrain a fluctuating field (eg. to vanish on

0dD) for all frequencies
CTP

R. L. Jaffe KITP, Oct 30, 2008
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Where the divergences are coming from:

* No finite strength interaction can force all frequency components of a quantum
field to obey a BC at a point. Trying to enforce a BC introduces arbitrarily
high energy scales = divergences

* Simple example in one dimension

The *“Dirichlet point”

“Derivation”
e One point: ¢(0) —0= E, e Modes inside sin k(x 4 a) with k = n7/2a
. e Modes outside identical to unconstrained
e Two points: ¢(_a) e ¢(a) =0=F 2(0,) case (and therefore cancel)
Fil i i Re I
“Standard” Approach (flawed) AMUBSP,
! her &
* One point: ¢(0) =0 et 2N
n=1
Constrained modes: sin kx, sin k|x| for & > 0. o\ Manifestly diverpent!

e But, ‘“Zeta-function” regulate:

Unconstrained modes: sin kx, cos kx for k£ > 0. = irpiey
Zn:l n = C(S)

Spectra identical so El =10 e And ((—1) = —1/12 which gives
L hem
* Standard answer: E, = T
her 4
E2 (CL) = —
48a
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E:=0 and E,= —277

Critique

e a — 0 on physical grounds F; — FE;, but E; = 0 and
lim, ,o E2(a) = oo

e Also, massless scalar QFT does not exist in 1-dimension.

It has a In m divergence as m — 0!

Careful approach

e Couple ¢ to a scalar background, compute renormalized one loop effective
energy, and then let background approach limit in which it constrains all
modes of the field.

Ling = go(z)d* + ci(e)o ()

e Only divergence comes from tadpole Feynman graph, which is renormalized to
zero (choice of scheme) by the counter term

e It suffices to take background to be a §(z) (could choose smooth function and
take o-function limit)

T tIn(1 2t) — 2
oy = 1 [ 1803 9/20) 072
ey t2 — m?2
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Y tin(1 2t) —g/2
oy 1€ [ 0L 0/20 0/
2T t2 — m?2

FE converges for any g and m # 0, but diverges logarithmically as m — O.

g

2t2

Bx(g,m, a) = tln(+24 5 (1= erh) —g)

he /°°dt 1
27 ) m  VtZ2 — m?2

(Both F; and E>(a) were computed using S-matrix version with Feynman
diagram subtraction and renormalization.)

Check:

*x a — 00 Es(g,m,a) — 2F;
*xa—0 Es(g,m,a) — E1(2g,m)
* m — 0 E ~ In(m).

o lim,_, is the “Dirichlet limit”.

*x limg_, o F2(g,m,a) ~ —glng — —oo
So there is no finite Casimir energy in the boundary condition limit.

* But force is finite and agrees with ‘‘zeta-function” approach

3 < 0E- ) her
lim = =

g— o0 da

48@2 center for N .
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Problems get worse in higher dimensions

e Same interaction in 3 + 1 dimensions. Look at contribution of
renormalized two point function

g2

B g]l= / d*p 6(p)5(—p) / dx In

6472

m? + x(1 — x)p?
m?2 + x(1 — x)p?

e Renormalized (note 12) and finite for any o (p) that vanished fast enough with
p.

e Divergence can only originate in bad large p behavior of o (p).

e In 3 4+ 1 dimensions one cannot even take the local (ie. 0-function) limit.

Saves reading lots of papers
e Boyer — repulsive Casimir pressure on a sphere

e Ambjorn & Wolfram - repulsive Casimir forces on cuboid
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The Casimir Energy and the quantum vacuum...

Is the Casimir effect definitive evidence that quantum fluctuations of the vacuum are “‘real’’?

Why is this interesting? Weinberg Rev. Mod. Phys. 61, 1 (1989)
“Perhaps surprisingly, it was along time before
Dark energy = cosmogical constant = particle physicists began seriously to worry about

vacuum energy ~ [ClltOff]4 quantum zero point fluctuation contributions to the
cosmological constant despite the demonstration in

1 the Casimir effect of the reality of zero-point

R,ul/ 1 ig,ul/R T _87TG(T,LW ITT gg,ul/) energies.”

Carroll Living Rev. Rel. 4, 1 (2001) [arXiv:astro-ph/0004075
¢ ...And the vacuum fluctuations themselves are

Are Casimir forces a “property of the
very real, as evidenced by the Casimir effect.”

vacuum’’?
' . Sahni and Starobinsky Int. J. Mod. Phys. D 9, 373
No.. They are qualftum forces between n}aterlal (2000) [arXiv:astro-ph/9904398]
objects computed in a clever, but deceptive way. “The existence of zero-point vacuum fluctuations

has been spectacularly demonstrated by the
Casimir effect.”

F 72 hec

A 240 d*

Casimir’s formula actually depends on the fine structure constant, and
the force vanishes as v — 0! RLJ, Phys. Rev. D72:021301 (2005)
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Let the fine structure constant go to zero: Conductivity vanishes -- Casimir force vanishes

2
Physical cutoff -- indeed as anticipated by Casimir kQ 2 dme“n
-- is the plasma frequency m X wp T m
Dominant frequencies contributing to Casimir effect are ~ c¢/d
mc i
et tete il 11 ot D | s s a>107°
dmhnd

The introduction of a fluctuating field is a calculational convenience that
can be dispensed with (Schwinger)

fgiLl] /d3xd3 p(Z)p(Y) i 1 /d?’x Ez(x—»)

7 — ] S

So the Casimir force is the infinite coupling limit of

a function of the coupling. L A
Fiite Casimir force is one of many

: {adan one-loop QFT effects that
Diagrams contributing to ! ,
o IS are computed in a formalism

where the vacuum is
embued with zero point

Diagrams contributing to the
vacuum fluctuation energy
density

/ \ e N B 2N F energy. Nevertheless, none
fu, AT F N F % 2N ! :
) ) | =1 )+ | )+ | '+}  of them give any direct
\ -f/ \_/ \_/ Toeed \\~/\\ \\—:-’/ \-/ \ evidence for the “reality’’ of
7 ,\\ /{ /\\\ PR —— vacuum fluctuation energy
I\ / [Q‘* // ) \\J/ .l density
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