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Introduction

KITP-2008

• All soft condensed matter systems are affected by electrostatic fields and
their fluctuations.

• Consider an interface between two different regions which have one or
more of the following properties:

⋆ different dielectric constants;
⋆ they contain different electrolytes in solution;
⋆ they contain surfactant or soap molecules which cause charging of the

interface.

• Examples are lipid membranes, soap films, small droplets, nanostructures.

• Effects give rise to dispersion forces due to Van der Waals forces and
forces between charged regions.

• Will discuss classical temperature-dependent forces, but can extend to
quantum finite-temperature effects.

• Formulation of LIfshitz theory generalized to such models with interactions.



Surfactants in Solution
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Head group is hydrophilic. Tail group is hydrophobic

Lipid membrane formed as 2D liquid bilayer in water. Specified by bending
rigidity, elasticity, . . ..



Properties of Membranes
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What we would like to know:

• The surface charge.

• The force acting on the membrane:

⋆ the renormalization of the bending rigidity for a curved layer;
⋆ the force between two interfaces.

For pure dielectrics these are examples of the Casimir force due to Van der
Waals attraction.

• The density profile of electrolyte near interface;

• The forces on (and between) charges near an interface.

Likely to have effect on electro-properties of cells.



Soap Film
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Soap Film
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Measure thickness of soap film as function of disjoining pressure:

Pd = Pfilm − Pbulk = − 1

β

(
∂Jfilm

∂L
− ∂Jbulk

∂L

)

Pd is effective pressure on interfaces −→ squeezes film electrolyte into bulk
reservoir.
J is the Grand Canonical partition function/unit area.



Soap Film
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Field Theory
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The full quantum thermal physics can be carried out in the imaginary time
formalism of QED coupled to the ion charges.

• Sum over Matsubara frequencies ωn = 2πnkBT/~

• Electrostatic potential A0 → A4 = −iA0. (C.f. Wilson lines in lattice QCD .)

• This gives rise to the full Casimir effect.

• Classical approximation is to keep only n = 0 =⇒ ω0 = 0 contribution. All
reference to ~ drops out.

• The classical contribution is dominant for systems discussed here.

• Can retain all n > 0 terms. Needs model for dielectric constant ε(iωn).
Formalism recovers known T = 0 results.

Alternatively, can directly consider electrostatic classical theory of interacting
ions and do Hubbard-Stratonovich transformation to get classical
field-theoretic formalism.



A Sketch of the Hubbard-Stratonovich Transformation
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See e.g. R Podgornik J. Chem. Phys. 91 5849 (1989),
R.Podgornik and B. Zeks J. Chem. Soc. Faraday Trans II 84 611 (1988)
The partition function for ions at positions xi with charge density
eqi(x) ≡ eqiδ(xi − x) is

Ξ =

∫
∏

i

dxi exp




1

2
β e2

∑

i6=j

∫

dx qi∇−2qj





Introduce the auxiliary field φ(x) and we can write

Ξ =

∫

d{φ}
[

exp

(
1

2
β

∫

dxφ(x)∇2φ(x)

)
∏

i

∫

dxi exp (−iβ eqiφ(xi))

]

Demonstrate by completion of the square.

• HS form does not exclude i = j ⇒ self-energy compensated by demanding
correct ion density ρ.

• Coupling of qi to φ implies that electric potential ψ = iφ.



Field Theory
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Consider full QED of system and reduce to electrostatic Lagrangian

L(ψ) =
1

2

∫

dxε(x)(∇ψ(x))2 − e
∑

i

qiψ(xi)

Here qi is the charge of the i-th ion at position xi.

Ξ =

∫

d[ψ] exp (βL(ψ)) .

Take the classical trace over ion positions, change axis of functional integration
ψ → φ, ψ = iφ .
Introduce chemical potential µ (µ+ = µ− ≡ µ) by Gibbs technique.

Ξ =

∫

d[φ] exp(S(φ))

S(φ) = −β
2

∫

dxε(x)(∇φ(x))2 + 2

∫

dxµ(x) cos (eβφ(x)) .

Variable dielectric constant ε(x) and chemical potential µ(x).



Symmetric Soap Film
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• In the Exterior region have free field theory µ = 0.
• In the Film have Sine-Gordon theory.

S = −β
2

∫

E
ε0(∇φ)2 − β

2

∫

F
ε(∇φ)2 + 2µ

∫

F
dx cos (eβφ) .

ρ = µ
d

dµ
logZ(µ) ⇒ ρ = µ〈cos (eβφ)〉.

Here ρ is the charge density. Applied to bulk reservoir fixes µ given ρbulk



Symmetric Soap Film
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Important length scales are:

lD = 1/m , m =
√

2ρe2β/ε Debye length/mass

lB = e2β/4πε , Bjerrum length .

Perturbation theory in coupling g = lB/lD.
Scale variables: φ→ √

g/eβ φ, x → xlD. Then, e.g.,

SF =
Z(g)

4πg
VF

︸ ︷︷ ︸

ideal term

+ S
(0)
F
︸︷︷︸

Debye−Huckel

+ ∆SF
︸ ︷︷ ︸

perturbation

, Z(g) =
1

〈cos (
√
gφ)〉

︸ ︷︷ ︸

renorm. const.

µ=Zρ

.

S
(0)
F = − 1

8π

∫

F
dx(∇φ)2 + φ2

∆SF =
1

4πg

∫

F
dx
[

Z(g)(cos (
√
gφ) − 1) +

g

2
φ2
]

.



1-D Symmetric Soap Film
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Model film by 1-D coulomb gas confined to z ∈ [0, L] with potential on
boundaries:

+- + -- ++ -  + + - +---
---

V(x)

f(n )0 f(n )L

L

The sources model the potential, attractive for -ve charges:

f(φ) = eλρ
−

(φ), λ controls the strength,

and the charge density operators for ± charges are

ρ±(φ) = e±iφ .



1-D Symmetric Soap Film
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The partition function is then

Ξ =
1

2π

∫ 2π

0
dφ0dφL f(φ0)K(φ0, φL;L)f(φL) ,

where

K(φ0, φz; z) =

∫

Dφ(z) exp

∫ z

0
dz′ L(φ(z′))

is the Schrödinger Kernel for evolution in the “Euclidean time” z.
Now,

Ψ(φ, L) =

∫

dφ′K(φ, φ′;L)f(φ′)

satisfies the Schrödinger equation

HΨ =
2

e2
∂

∂L
Ψ , H =

∂2

∂φ2
+

4µ

e2
cos (φ) .

Mathieu equation. Harmonic term gives the Debye mass.



1-D Symmetric Soap Film

KITP-2008

The strength of the effect is controlled by a = 4µ/e2.

L large:

• Small a, large e. Use Schrödinger perturbation theory for ground state
energy of H.

Pbulk =
1

2
ρ

[

1 +
7

8

( ρ

e2

)

− 23

288

( ρ

e2

)2
− 4897

122288

( ρ

e2

)3
+ . . .

]

.

Leading term is free gas but for density ρ/2 → dimerization.

• Large a, small e. Use Feynman perturbation theory → Feynman diagram
expansion.

Pbulk = ρ− 1

4

√

ρe2 +
1

1024

√

e6

ρ
+ . . .

Second term is familiar Debye-Hückel term.



1-D Symmetric Soap Film

KITP-2008

For small L expand K(φ0, φL;L) on eigenfunctions of Mathieu equation →
numerical approach for eigenfunctions/eigenenergies.

0.0 2.0 4.0 6.0 8.0 10.0
film thickness  L

1.30
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1.34

1.36

1.38

pr
es

su
re

  P

kT = 1.0, e = 1.0, µ = 1.0.
Units are not important but collapse
shown as a function of surface po-
tential: λ = 0.3 → 0.8 for curves as
they ascend.

• Classical or Mean Field Theory gives the Poisson-Boltzmann equation
which does not predict collapse:

Pd = 2µ(cosh eφm − 1), φm is mid-point potential.

• The Casimir attraction is intrinsically a fluctuation phenomenon.



3-D Symmetric Soap Film

KITP-2008

Film with surfactant. Charging due to different molecule sizes creating Stern
depletion layers.

h L h

h’h’

+

−

AIR AIRSALT SOLUTION

Debye
Mass 

Dielectric
Constant

z 0 L

ε ε ε ε ε ε ε0 0

0 0m0 0

Evolve in Euclidean “time” z from
−T → T with T → ∞. I.e., from far
left to far right.
Encodes transfer matrix approach.
See e.g. R Podgornik and A
Parsegian cond-mat/0309287

Partition function is written in the Schrödinger functional formalism

Ξ =

∫

DφTDφ0DφL K(φT , φ0;T )Σ(φ0)K(φ0, φL;L)Σ(φL)K(φL, φT ;T − L)

with periodic boundary conditions. Normalize to empty system.



3-D Symmetric Soap Film
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Expand about linear Debye-Hückel theory with

K0(φ0, φL;L) =

∫ φL

φ0

Dφ exp

(

− 1

8π

∫

F
dx

[
(∇φ)2 + φ2

]
)

.

Now, fourier transform in the coordinates in the film:

φ(x⊥, z) −→ φ̃(k, z) again treat z as “time”

φ0 −→ φ̃(k, 0) , φL −→ φ̃(k, L).

Then,

K0(φ0, φL;L)=
∏

k

∫ φ̃L

φ̃0

Dφ̃ exp





∫ L

0
dz





(

∂φ̃

∂z

)2

+ (k2 + 1)φ̃2









≡
∏

k

K̃0(φ̃0(k), φ̃L(k);L) .



3-D Symmetric Soap Film
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Feynman tells us how to calculate K0 but it’s a simple Gaussian integral and
can readily do it:

K̃0(φ̃0, φ̃L;L) =

√

1

16π2 sinh (EL)
︸ ︷︷ ︸

Pauli-van-Vleck factor

exp

(

−1

2
φ̃

T · D(E) · φ̃
)

.

with E =
√
k2 + 1 and

φ̃ =
(

φ̃0, φ̃L

)
, D =

1

8π sinh (EL)

(
cosh (EL) −1

−1 cosh (EL)

)

.

Substituting into the expression for Ξ gives a Gaussian integral, for each k

with an exponent which is a quadratic form, φ̃ · M (E) · φ̃, in the boundary
fields φ̃T , φ̃0, φ̃L.

Free energy: Ω = −kBT log
(

Ξ(0)
)

∼ − 1

2
kBT

∫
dk

(2π)D−1
log(det(M (E)) .



3-D Symmetric Soap Film
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• Develop (Old Fashioned) perturbation theory with renormalized
self-energy. Propagator is M(E). E.g., Self energy of field, 〈φ2〉, inside
layer gives effect of image charges.

Expansion is in g = lB/lD.

• Calculate

⋆ Profile for ρ(σ, L) (L is film thickness).

⋆ Dynamic surface charge ρi(L) as a function of the steric surface
potential.

⋆ Casimir forces between surfaces in presence of electrolyte and
disjoining pressure.

⋆ Contact value theorem relating disjoining pressure to mean surface
charge and fluctuation contributions.

⋆ Effect on surface tension due to electrolyte. Corrections to
Onsager-Samaras result (J. Chem. Phys. 2 528 (1934)).



3-D Symmetric Soap Film – Surface Tension
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L' Lh

ElectrolyteExterior
Stern
layer

σe =
1

A
[J(L′, L) − J (B)(L) − J (E)(L′)], J = − log(Ξ)/β.

In J(L′, L) have exclusion layer. Effect due to image charges.
In the medium

Ξ =

∫

dφ eS0+∆S ≈ e〈∆S〉0

∫

dφ eS0 ,

where 〈∆S〉0 is computed in the presence of the interface.

• Careful treatment of 1/r divergence.
• Renormalize µ→ ρ to remove self-energy divergence.
• Do not get these two divergences mixed up.



3-D Symmetric Soap Film – Surface Tension
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〈∆S0〉 = A

∫

dz

[

2ρ
(

e−e2β2GR(0,z)/2 − e−e2β2GR(0,∞)/2
)

+
βεm2

2
G(0.z)

]

,

G(0, z) = 〈φ(0, z)2〉0 , GR(0, z) = G(0, z) −G(0,∞) .

Need Gaussian measure in boundary fields

1 2 3

z

This takes the form

exp

(

−1

2
φ̃
†
(p) · D̃(p, z) · φ̃(p)

)



3-D Symmetric Soap Film – Surface Tension
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G̃(p, z) = [D̃−1(p, z)]33

D̃(p, z) =





a −b 0
−b c −d
0 −d e





With

a = βǫ0p+ βǫp coth(ph)

b = βǫp cosech(ph)

c = βǫp coth(ph) + βǫ
√

p2 +m2 coth(
√

p2 +m2 z)

d = βǫ
√

p2 +m2cosech(
√

p2 +m2 z)

e = βǫ
√

p2 +m2(1 + coth(
√

p2 +m2 z))



3-D Symmetric Soap Film – Surface Tension
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For h = 0 find

σe =
2ρ

m

∫

du
(

1 − e−gA(u)/2)
)

+
ρg

4m
∆

A(u) =
∆e−2u

u
+ (1 − ∆2)

∫ ∞

0
dθ sinh θ e−2u cosh θ

(
e−2θ

1 + ∆e−2θ

)

.

Treating g as small we then find

βσe =

−ρg∆
2m

[

ln
(g

2

)

+ 2γE − 3

2
− 1

2∆2
(1 + ∆) (2∆ ln(2) − (1 + ∆) ln(1 + ∆))

]

+O(g2 ln(g)) −→
︸︷︷︸

∆→0

ρg

4m
(2 ln(2) − 1) ∆ = (ε− ε0)/(ε+ ε0)

This is the generalization of the Onsager – Samaras result for which they
assume ∆ = 1. The effect is not huge – of order a few percent for water.
Y. Levin J. Stat.Phys. 110 825 (2003), J. Chem. Phys. 113 9722 (2000); Y. Levin and J.R. Flores-Mena Europhys. Lett. 56 187 (2001)



3-D Symmetric Soap Film
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The appearance of the Casimir effect in soft-condensed matter systems is well
established. See e.g.

• J. Mahanty and B.W. Ninham “Dispersion Forces” Academic Press (1977)
• V.M. Mostepanenko and N.N. Trunov “The Casimir Effect and its

Applications” Oxford (1997)
• V.A. Parsegian “’Van der Waals Forces ....” CUP (2006)
• B.W. Ninham and J. Daicic PR A57 1870 (1998)
• M. Kardar and R. Golestanien Rev. Mod. Phys. 71 1233 (1999)
• R. Podgornik and J. Dobnikar cond-mat/0101420 (2001)

We present a field theoretic formulation to account for charging proceses and
interactions. In particular, the triple layer without charging is treated in

• B.W. Ninham and V.A. Parsegian J. Chem. Ph. 52 4578 (1970)
• W.A.B. Donners et al. J. Colloid Interface Sci. 60 540 (1997)



3-D Symmetric Soap Film – Disjoining Pressure
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Use the Gaussian, or free model for the bulk field fluctuations but full nonlinear
modelling of the surface charging due to the Stern layer.
Surface charging strength parameter is

α = mµ∗/2µ

m = Debye mass; µ = bulk chemical potential; µ∗ = surface cation chemical
potential.
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nonlinear theory
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3-D Symmetric Soap Film – Disjoining Pressure
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m ∼ 0.02nm−1 m ∼ 0.07nm−1

Taken from V. Casteletto et a., Phys. Rev. Lett. 90, 048302, (2003)



3-D Symmetric Soap Film – Disjoining Pressure
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• Multi-loop expansion possible.

• Self-energy of charges encoded in Z(g) renormalization factor:

µ = Z(g)ρ , Z(g) =
1

〈cos (φ)〉

µ and Z(g) are divergent but ρ is not.

• Sine-Gordon field theory is non-renormalizable and so UV cut-off is
parameter in the theory.

• Cut-off controlled by interatomic spacing a, and appears through integral
over wave vectors.



Symmetric Layered Systems
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In general layered system need not be planar. E.g., can be cylindrical,
spherical etc

δ

R

R

 1

 2εεε

Use coordinates (σ,x), with σ normal to interface surface.

Interfaces labelled by σ = constant, and x coordinates within interfaces. E.g.,

Planar film: (z,x⊥) , Cylindrical Film (r, x, θ) .



Symmeteric Layered Systems
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• Can write partition function in Schrödinger functional formalism.

• Dynamics of the field φ(x, σ) defined by evolution in Euclidean time
coordinate t, −∞ < t <∞ – given in terms of σ.

• Volume measure is dv = J(σ)dσdx and t is defined by

t(σ2) − t(σ1) =

∫ σ2

σ1

dσ

J(σ)
.

• E.g., , in the cylindrical geometry σ = r, t = log σ and in the planar case
t = σ = z:

Planar geometry σ = z, J(σ) = 1 , =⇒ t = σ ,

Cylindrical geometry σ = r, J(σ) = σ , =⇒ t = log σ .



Symmeteric Layered Systems
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For a given layer we write

K̂(φ2(x), σ2;φ1(x), σ1) =

∫ φ2

φ1

Dφ eS(φ) .

φi(x) = φ(x, σi), i = 1, 2 are the boundary values of the field φ(x, σ) on the
bounding surfaces (interfaces) Si, respectively, defined by σ = σi.

The partition function is

Ξ =

∫ N∏

i=0

Dφi K̂i(φi+1(x), φi(x), σi+1, σi) .

• Interface potentials or charges included by inserting appropriate operators
at σ = σi.



Symmetric Layered Systems
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E.g., fixed surface charge ρi(x) on Si

Σi = exp

(

−i
∫

dxρi(x)φ(x, σi)

)

,

Ξ =

∫

Dφi K̂0Σ1K̂0Σ1 . . .ΣN−1K̂N .

• Expectation values for observables and correlation functions computed in
usual time-ordered way. E.g., the density operator is

ρ̂(σ,x) = exp (−iφ(x, σ))

〈ρ̂(σ′,x′)ρ̂(σ,x)〉 =
1

Ξ

∫

Dφi K̂(σ0, σ)ρ̂(σ)K̂(σ, σ′)ρ̂(σ′)K̂(σ′, σ∞) .

Layered structure inside K̂ understood.



Symmetric Layered Systems
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Consider contribution from S(0); the Gaussian approximation. In dimensionless
variables

K̂(0)(φ2(x), σ2;φ1(x), σ1) =

∫ φ2

φ1

Dφ exp

(

− 1

8π

∫

V
dv
[

(∇φ)2 + φ2
])

.

Evaluate and re-express in original dimensionfull boundary fields to get

Ξ(0) =

∫ N∏

i=0

Dφi K̂
(0)
i (φi+1(x), φi(x), σi+1, σi) .

The Casimir free energy is given by

FC = Ω(0) − Ω
(0)
B , Ω = −kT log(Ξ(0)) , ΩB = −kT log(Ξ

(0)
B ) .

ΩB is the equivalent bulk contribution of an independent set of pure bulk
systems having the same volume and properties as the layers composing the
system.



Symmetric Layered Systems
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K̂(0) is Gaussian functional integral. Classical field φc minimizes action S(0):

−(∇ · J(σ)∇)φc + J(σ)φc = 0 ,

with boundary constraints

φc(x, σ1) = φ1(x), φc(x, σ2) = φ2(x) .

Assume ∇ · J(σ)∇ is separable. Then

− d

dσ
J(σ)

d

dσ
φc − J(σ)(∇2

x + 1)φc = 0 .

Orthonormal eigenfunctions of −∇2
x are denoted X(s,x) with eigenvalue

λ(s, σ); s is set of D − 1 quantum numbers:

−∇2
xX(s,x) = λ(s, σ)X(s,x) .



Symmetric Layered Systems
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Classical field φc(x, σ) expanded on the complete set of functions {X}:

φc(x, σ) =
∑

s

T (s, σ)X(s,x) ,

T (s, σ) satisfies ODE:
[

− d

dσ
J(σ)

d

dσ
+ J(σ)(λ(s, σ) + 1)

]

T (s, σ) = 0 .

Take two solutions

F1(s, σ) finite as t(σ) → −∞ ,
F2(s, σ) finite as t(σ) → ∞ .

and then general solution for φc(x, σ) from

T (s, σ) = a1(s)F1(s, σ) + a2(s)F2(s, σ) .



Symmetric Layered Systems
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The boundary fields φi(x) are expanded as

φi(x) =
∑

s

ci(s)X(s,x) , 0 ≤ i ≤ N .

Consider a layer bounded by surfaces S1 and S2. The relation between
c(s) = (c1(s), c2(s)) and a(s) = (a1(s) , a2(s)) is

c = a · F (s, σ2, σ1) , F (s, σ2, σ1) =





F1(s, σ1) F1(s, σ2)

F2(s, σ1) F2(s, σ2)



 .



Symmetric Layered Systems
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The free classical action is given by

S(0)(φc) = − 1

8π

∫

V
dv
[

(∇φc)
2 + φ2

c

]

=
1

8π

∫

dx

[

J(σ)φc(x, σ)
dφc(x, σ)

dσ

]σ2

σ1

where have used integration by parts. Find

S(0)(φc) = − 1

2

∑

s

c(s) · D(s, σ2, σ1) · c(s) ,

with

D = F−1G , G(s, σ2, σ1) =





−J(σ1)F
′
1(s, σ1) J(σ2)F

′
1(s, σ2)

−J(σ1)F
′
2(s, σ1) J(σ2)F

′
2(s, σ2)



 .



Symmetric Layered Systems
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Result is

K̂(0)(φ2(x), σ2;φ1(x), σ1)=
∏

s

K(0)(s, c2(s), σ2; c1(s), σ1) ,

K(0)(s, c2(s), σ2; c1(s), σ1)=A(s, σ2, σ1) exp

(

−1

2
c(s) · D(s, σ2, σ1) · c(s)

)

.

A(s, σ2, σ1) is given by the Pauli-van-Vleck formula

A =
∏

s

A(s, σ2, σ1) =

(

1

2π

∣
∣
∣
∣
∣
det

[

∂2S(0)(φc)

∂φ1∂φ2

]∣
∣
∣
∣
∣

)1/2

.

Then

A(s, σ2, σ1) =

√

|D12(s, σ2, σ1)|
2π

.



Symmetric Layered Systems
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Final outcome is

K(0)(s, c2, σ2, c1, σ1) =
1

√

|H(s, σ2, σ1)|
exp

(

−1

2
c · D(s, σ2, σ1) · c

)

,

D(s, σ2, σ1) =
1

H(s, σ2, σ1)





W (s, σ2, σ1) 1

1 W (s, σ1, σ2)



 .

W (s, σj , σi) = J(σi)[F1(s, σj)F
′
2(s, σi) − F ′

1(s, σi)F2(s, σj)] ,

H(s, σj , σi) = F1(s, σi)F2(s, σj) − F2(s, σi)F1(s, σj) .

Generalized Feynman result for Schrödinger kernel
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• Muscle cells contain network of tubes formed from lipid bilayer: t-tubules.

Franzini-Armstrong and Peachey (1981)

• Very small: typical radius R ∼ 50 − 100(nm).

• Network has junctions and must contract and expand as cell shape
changes.

• Why are t-tubules stable?
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Free energy of tube length L and radius R due to bending is

FB(L,R) =
kBTκBL

R
.

Tube is unstable; stability when R→ ∞, L→ 0 (total area RL fixed).

• Bending rigidity κB ∼ 1 − 30.

• Lipid molecule has helicity =⇒ preferentially forms helical ribbons.

• Electrostatic attraction between edges of ribbon cause tube formation.
Unlikely since experiments show no effect of adding electrolyte =⇒
short-distance mechanism.

• Attractive Casimir force due to free energy of cylindrical layered system.
Renormalizes κB.
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For cylindrical geometry σ = r, J(σ) = σ. Equations for normal mode
decomposition are

−
(

1

r2
∂2

∂θ2
+

∂2

∂z2

)

X(s, θ, z) = λ(s, r)X(s, θ, z) ,

X(s, θ, z) = 1
2πe

inθ eipz .

s = (n, p) , n ∈ Z, −∞ < p <∞ ,

λ(s, r) = (n2/r2 + p2) .

Have
[

− d

dr
r
d

dr
+

n2

r
+ (p2 + 1)r

]

T (s, r) = 0 .

=⇒

F1(s, r) = In(Pr) , F2(s, r) = Kn(Pr) .
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• Can now calculate Ξ(0) and hence FC(R,L):

• Field integration measure is measure over normal mode coordinates

d{φ} =
∏

s

dc(s) .

• Gaussian integrals. Equivalent to log det(M) contribution of general field
theories. It is the one-loop contribution.

• Gives van-der-Waals forces.

• There is equivalent Hamiltonian formalism. K(0)(s, c′, r′; c, r) satisfies
Schrödinger equation considered as function of c and t = log(r).
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For cylindrical system

− ∂

∂t
ψ(s, c, t) =

(

−1

2

∂2

∂c2
+

1

2

(
P 2e2t + n2)c2

)
)

ψ(s, c, t) ,

is satisfied by

ψ(s, c, t) =
1

√

Kn(Pr)
exp

(

−1

2
Vn(Pr)c2

)

Vn(z) = − zK ′
n(z)

Kn(z)
.

P =
√

p2 + 1 . s = (p, n) .
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• t-tubule has radius R and wall thickness δ

• Compute Casimir free energy as

FC(R, δ) = F
(0)
MW (R, δ) − 2πRLF∞(δ) .

• F
(0)
MW (R, δ) is free-energy normalized by system just water-filled.

• F∞(δ) normalizes to flat bulk membrane:

F∞(δ) = lim
R→∞

F
(0)
MW (R, δ)

2πRL
.

Assumes tube attached reservoir of flat bulk membrane; reasonable for
t-tubule.
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δ

R

R

 1

 2εεε

R ∼ 100(nm), δ ∼ 2(nm), ε′ ∼ 4ε0, ε = 80e0

Result:

F
(0)
C (R, δ)

LkBT
=

1

r1
g(Λr1,∆) +

1

r2
g(Λr2,−∆)

︸ ︷︷ ︸

individual cylinder contributions

+h(r1, r2,Λ,∆)−h∞(Λ,∆)
︸ ︷︷ ︸

bulk
subtrn

.

Need short-distance cut-off Λ ∼ 2π/a where a is intermolecular distance.
Feature of all Casimir effect calculations.
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g(x,∆) = − 1

256
∆2 [6 log(x) + 30 log 2 + 6γE − 11] + O(∆4) +O(1/x) .

hR
2 (r1, r2,Λ,∆) =

3

64

∆2

R

[

log

(
δ

2R

)

+ 2 log 2 − 1

2

]

.

The bulk contribution has been subtracted.

Find correction κC to bending rigidity:

κC =
∆2

64

[

3 log

(
πδ

a

)

+ 6 log 2 + 3γE − 4

]

+ ∆4B(∆) .

• a is intermolecular separation in water/lipid: a ∼ 0.1 − 0.5(nm).

• R ∼ 100(nm) and δ ∼ 2 − 5(nm).

• Constant in brackets 0.02954 . . ..
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∆ δ/a
O(∆2) coeff. of
1/R from Eqn.

Coeff. of 1/R
from simula-
tion

B(∆2)

78/82 103 -0.342 -0.443 0.123
78/82 102 -0.244 -0.346 0.123
0.6 103 -0.1361 -0.1520 0.123
0.6 102 -0.0972 -0.0162 0.123
0.2 103 -0.0151 -0.0162 –
0.6 103 -0.0038 -0.0040 –

• κC < 0 =⇒ Casimir force is attractive.

• Other contributions from non-zero Matsubara modes. Will contribute to
attraction – maybe factor of 2.

• Not big enough to realistically stabilize t-tubule.
• H. Kleinert (PL A136 253 (1989)) found δκb > 0. Can show need to

properly account for δκb → 0 as δ → 0. May be due to ensemble choice.
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HELFRICH THEORY

• Surface height h fluctuations in lipid membrane described by Helfrich
Hamiltonian:

H =
1

2

∫

Ap

d2
x

[

κ
(
∇2h

)2
+ µ (∇h)2

]

.

κ is bending rigidity, µ is surface tension.

• 4th order in derivative =⇒ not canonical dynamics.

• Can generalize Schrödinger kernel technique and derive general
Pauli-van-Vleck formalism. In this case, quadratic form (such as D) is 4 × 4
matrix.

We can consider a stripe of minority lipid membrane in bulk membrane of
majority lipid.
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z

x

0 l

LBULK (0) BULK (0)STRIPE

κ    µ κ µ κ     µ0 0 0  0

The boundary conditions on the interfaces are now

X = (h(z = 0), ∂h/∂z|z=0) , Y = (h(z = l), ∂h/∂z|z=l) .

We put these together to give the 4-component vector U = (X,Y ).
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The generalized kernel is

K(X,Y ; l) =
1

2π
[det(B(l))]1/2

︸ ︷︷ ︸

Generalized
Pauli-van-Vleck factor

exp

(

−1

2
UT · E(l) · U

)

.

where E(l) is a 4 × 4 matrix of the block form

E =





AI(l) −B(l)

−BT (l) AF (l)





AI ,AF ,B are 2 × 2 matrices.

The approach generalizes to higher-derivative energy functionals.
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Results are rather complicated but we find:

• Fluctuation-induced line tension:

γ =
kBT

a

[
1

2
ln

(
1 − ∆2/4

1 − ∆2

)

+
ma

π
I(∆) +O((ma)4)

]

Here a is a short-distance cut-off and

∆ =
κ− κ0

κ+ κ0
, m =

√

µ/κ (chosen the same for both lipid species)

The function I(∆) . 0.04.
• µ = 0 ⇒ m = 0

The Casimir Force between the interfaces is attractive and is of the form

fC(l,∆) =
kBTC(∆)

l2
|C(∆)| . 0.4.
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−1 −0.5 0 0.5 1
∆

−0.4

−0.3

−0.2

−0.1

0

C
(∆

)

The function C(∆). Note that C(∆) 6= C(−∆)



Comments and Further Work

KITP-2008

PERTURBATION THEORY.

• Developed full diagrammatic expansion.

• Renormalization of self-energy by Z(g). Remaining divergences regulated
by a, the inter-molecular spacing.

• Careful to NOT expand Boltzmann factors, especially as r → 0:

exp

(

−e
2

r

)

= 1 − e2

r
+ . . . BAD!

• Field propagators are matrix inverse of quadratic form in action for Ξ(0), the
free-energy of the Gaussian layered system.

• Encodes effect of interfaces. Compute modification of inter-ion potential
near interfaces.
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INTERFACE FLUCTUATIONS

• Construct effective field theory for fluctuations within an interface.

• If δσ(x) = h(x) is displacement from symmetric interface then integrate
over d{φ} to give effective action S(h) as derivative expansion.

• Use coordinate transformation to smooth out surface – a shear in this case.
This induces a metric; can expand in h(x) and average over the field φ with
a Feynman measure appropiate to the layered flat membrane system. Will
produce also non-local interaction terms.

• Can use Hamiltonian formalism to reduce calculation to diagrams of
old-fashioned perturbation theory.

Ongoing work.

C.f. effect of corrugations studied by
T. Emig, A. Hanke, R. Golestanian, M. Kardar PRL 87 (2001) 260402
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CELLS

• Influence dynamic modelling of membrane potentials and ion
concentrations.

⋆ Physiologists develop models for muscle cells and volume stability as
function of potentials and concentrations.

⋆ Model forces between ions in vicinity of membrane interface.

⋆ Can we really help with more accurate understanding of charging
mechanisms, dispersion forces, concentration profiles and the potential
across membranes???
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The quantum partition function with constraints φ(z = 0) = φ0, φ(z = L) = φL

is

Ξ =

∫

d{φ}〈φ|e−βH |φ〉φL

φ0

=

∫ φl

φ0

d{φ} exp

(
1

~

∫
~β

0
dt

∫ L

0
dz

∫

dx⊥L(φ(x⊥, z, t))

)

.

For the quadratic Debye-Hückel or free field theory we have the Fourier
decomposition:

Ξ =
∏

n

∏

k

∫ φ̃L

φ̃0

d{φ̃} exp



−1

2
β ε(iωn)

∫

dz





∣
∣
∣
∣
∣

∂φ̃

∂z

∣
∣
∣
∣
∣

2

+ (ω2
n + k2 +m2)|φ̃|2









where φ̃ ≡ φ̃(ω, n,k, z) and the Matsubara frequencies are

ωn =
2πn

β~
=

2πnkBT

~
.
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This lecture has just dealt with the n = 0 contribution, from which all mention of
~ disappears.

• In the limit T → 0, β → ∞ we must keep the contributions of all n and
the Free Energy becomes the ground state energy of the system.

• For perfectly conducting plates separated by z = L we impose φ0 = φL = 0
and then

E = −~

∫
dω

2π

dD−1k

(2π)D−1
log K̃(0, 0;ω,k, L).

The only term that is L-dependent is the Pauli-van-Vleck term normalizing
K̃.

E =
~

2

∫
dω

2π

dD−1k

(2π)D−1
{log(sinh (ρL)) − ρL}

with ρ =
√
ω2 + k2 +m2
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In D = 3

E = − ~

4π2

∫ ∞

0
dωdk k

∑

n

1

n
e−2ρn = − ~

4π2

∑

n

∫ ∞

0
dρρ2e−2ρn .

This gives

E = − ~π2

1440

1

L3
⇒ Fc = − ~π2

480

1

L4
.

Fc(L) is the usual Casimir force for a single component scalar field.

• The condition φ = 0 is approximate since must account for skin depth
effects.

• The thermal effect is non-retarded since it corresponds to ω = 0.


	Introduction
	Surfactants in Solution
	Properties of Membranes
	Soap Film
	Soap Film
	Soap Film
	Field Theory 
	A Sketch of the Hubbard-Stratonovich Transformation
	Field Theory 
	Symmetric Soap Film
	Symmetric Soap Film
	1-D Symmetric Soap Film
	1-D Symmetric Soap Film
	1-D Symmetric Soap Film
	1-D Symmetric Soap Film
	3-D Symmetric Soap Film
	3-D Symmetric Soap Film
	3-D Symmetric Soap Film
	3-D Symmetric Soap Film
	3-D Symmetric Soap Film -- Surface Tension
	3-D Symmetric Soap Film -- Surface Tension
	3-D Symmetric Soap Film -- Surface Tension
	3-D Symmetric Soap Film -- Surface Tension
	3-D Symmetric Soap Film
	3-D Symmetric Soap Film -- Disjoining Pressure
	3-D Symmetric Soap Film -- Disjoining Pressure
	3-D Symmetric Soap Film -- Disjoining Pressure
	Symmetric Layered Systems
	Symmeteric Layered Systems
	Symmeteric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Symmetric Layered Systems
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	Concentric Cylinders
	SURFACE FLUCTUATIONS
	SURFACE FLUCTUATIONS
	SURFACE FLUCTUATIONS
	SURFACE FLUCTUATIONS
	SURFACE FLUCTUATIONS
	Comments and Further Work
	Comments and Further Work
	Comments and Further Work
	Postscipt: The Full Casimir Effect
	Postscipt: The Full Casimir Effect
	Postscipt: The Full Casimir Effect

