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How paper folds is rather subtle

It bends without stretching almost every-
where

Local constraint ⇒ defects

Simplest local defect: a cone

Remarkable point: conical defect orga-

nizes how the sheet folds



OUTLINE

• Introduce fully non-linear framework to describe sheet

in this approximation

• First review situation without the local constraint

• Energy spectrum: ground states and (stable) excited states

• Self contacts

• Conical stability vs instability without the center

• Bending surfaces of constant -ve Gauss curvature



SINGLE COMPONENT FLUID MEMBRANE

• On mesoscopic scales relevant degrees of freedom
are geometrical

Parametrized surface (u, v) 7→ X(u, v)

Two surface tensors encode geometry:

• Induced metric: gab = ea · eb

• Extrinsic curvature: Kab = ea · ∂bn = Kba

Tangents ea = ∂ X/∂ua, a = 1,2 ; Normal n

• Covariant derivative ∇a compatible with metric:
[∇a,∇b] 6= 0 ⇒ Intrinsic Curvature

• Principal curvatures are eigenvalues of Ka
b = gacKcb

Ka
b vb

I = CIv
a
I I = 1,2

• Free energy constructed out of symmetric scalars

Mean Curvature K = gabKab = C1 + C2

Gaussian Curvature KG = detKa
b = C1C2



FLUID MEMBRANE

Energy cost associated with bending:

• Simplest energy quadratic in curvatures

H[X] =
1

2
κ

∫

dA (C1 + C2)
2

• H ∼
∫

dA C1C2 plays role through boundaries/interfaces

• Global constraints are familiar: A, V , perhaps M =
∫

dA K

• Remarkably good description of equilibrium if

there is no penalty associated with tangential deformations



ACCOMMODATING A PENALTY ON TANGENTIAL DEFORMATIONS:

• Continuum modeling is technically difficult; no agreed model

• Limit: surface is unstretchable

-treat as a local constraint: gab = g(0)
ab ‘the memory’

• Distances frozen ⇒ penalty is infinite

-opposite fluid membrane idealization; but also geometrical

• A good approximation almost everywhere
if the surface is thin (Lord Rayleigh):

Energy penalty associated with bending (h3)

≪ penalty associated with stretching (h)



EGREGIOUS THEOREM

• Metric fixed ⇒ Gaussian curvature G = C1C2 fixed

Consequence of integrability condition on
structure equations: ∇aeb = −Kab n

• Flat surface: G = 0 ⇒ C1 or C2 = 0

Unstretchable flat surface remains flat

Bending occurs in one direction; two implies stretching

Deformed geometry: Cylinder, Cone, Developable surface



DEFECTS

Globally deformed surface generally is
not a cylinder, a cone, or developable

Forces applied to surface may oblige it to
fold along more than one direction some-
where

Energy effective way to adjust: confine
regions where stretching occurs within
sharp peaks and ridges (T. Witten et
al.)



Poke a circular disc into a circular ring
(BenAmar&Pomeau,Cerda&Mahadevan)

A conical singularity (point defect) is
generated

It did not exist previously

Its creation requires external forces

Cones are the most elementary defects:
but first studied mid 1990s



A WORD ABOUT CONES

Γ

u t

n

z

s

r

R

• Closed curve on sphere Γ : s 7→ u(s)

s arc-length along Γ

r distance to apex in direction u(s)

⇒ (r, s) 7→ X(r, s) = ru(s) is a cone

L = Length of Γ
ϕe = L − 2π Angle surplus

• Two cones with same ϕe are isometric

(1) Isometric deformation of planar disc: L = 2π, ϕe = 0
− L = 2π ⇒ Γ lies in one hemisphere
− Ground state a great circle
− Requires external force to generate conical singularity

(2) Inflated Corner of paper bag: ϕe = −π a deficit
− Familiar circular ice cream cone

(3) Cone with surplus angle: (Muller,BenAmar,JG 2008)
− will show ∃ non-trivial ground state; stable excited states
− No external forces are necessary!



THE MERMAID’S WINEGLASS

• Acetabularia acetabulum

-unicelular algae, Hammerling’s experi-
ment

-base, stalk, conical cap, 0.5 - 10 cm

• Growing disc: R ∝ ℓ
circumference 2πR, geodesic radius ℓ

R = ℓ embedded as planar disc
R < ℓ circular cone
R > ℓ a surplus angle

Cannot be embedded as an axially sym-
metric geometry

Nor is it a very good wineglass!



THE CONE AS A CONSTRAINED EQUILIBRIUM

• Bending energy of a conical disc of radius R

B =
1

2
ln(R/r0)

∫

dsκ2

κ = −n · t′ geodesic curvature on sphere; s arc-length on S2

Energy density ∼ 1/r

• A cone is not a critical point of bending energy without local constraints

Poor man’s treatment: treat as Euler-Elastica on sphere

Implement unstretchability by fixing length

Shortcomings: relies on touch of luck, equations are missing; no idea
what stresses are; impossible to determine if configurations are stable



SURFACE SHAPES

In absence of external forces, conical geometry is completely determined

by surplus angle ϕe and a quantum number n

ϕe = 2π, n = 2,3,4

Two or more folds (four-vertex theorem, symmetry κ ↔ −κ)

ϕe small, ∃ equilibrium solution without self-contacts for all n ≥ 2



KISSING or physics in the ruff

Increase ϕe ⇒ conical geometry packs more densely

At some point, mathematical surface will self-intersect, first with 2-fold

The physical surface does not

n 2 3 4 5 10 50 → ∞
ϕ

(n)
e 7.08 13.30 17.78 21.12 29.38 34.92 35.23

ϕe > 35.23:

all states exhibit self-contact



SELF CONTACT

• Contact ⇒ normal forces

Two regions deform accordingly

• Stress on contact 6= stress on free cone

• Two boundary conditions associated
with forces pressing two regions to-
gether:

(i) continuity of tangent plane
(ii) discontinuity of curvature

∆κ =
√

∆ tension

- analogous to adhesion

• Contact length Lcontact

Energy minimization w.r.t Lcontact ⇒
equilibrium shape

• Minimum breaks two-fold symmetry

Increase ϕe⇒crowding,higher curvatures



THE ENERGY SPECTRUM
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Scaled energy density B for n = 2,3,4,5,10.

ϕe < ϕ (2)
e = 7.08: n = 2 is ground state

Red curve: touching 2-fold

ϕe ≥ ϕ (2)
e : continuity ⇒ initially n = 2 remains ground state

ϕe > 8.27: B3 < B2 n = 3 becomes the ground state



DEFORMING THE GEOMETRY

(1)Identify geometries minimizing H subject to local constraint
(2)What is the stress associated with a given geometry?

Treat first without metric constraint

How does energy change under a small deformation

X(u) → X(u) + δX(u)

H depends on X only through gab and Kab

H[X] =

∫

dAH(gab, Kab) , dA =
√

gd2u

• gab and Kab depend on X through the tangent vectors {ea,n}
gab = ea · eb , Kab = ea · ∂bn

ea = ∂aX , ea · n = 0 , n
2 = 1

• Enforce structural constraints using Lagrange multipliers

Treat X,ea,n, gab and Kab as independent variables



HC = H[gab, Kab] +

∫

dA f
a · (ea − ∂aX)

+

∫

dA

[

λa
⊥(ea · n) + λn(n

2 − 1)

]

−
∫

dA

[

Hab(Kab − ea · ∂bn) − 1

2
T ab(gab − ea · eb)

]

• X appears only in tangency constraint (translation invariance) ⇒
δHC

δX
= ∇af

a

• Equilibrium fa conserved: ∇af
a = 0 is the shape equation (JG 2004)

f
a = (T ab −HacKc

b) eb −∇bHab
n

• Given H[gab, Kab]: T ab = −2δH/δgab , Hab = δH/δKab

–Physical stress completely determined by geometry



STRESS ASSOCIATED WITH BENDING

H = (C1 + C2)2/2 + σ ⇒ fa = fab eb + fa n ,

fab = K(Kab − K

2
gab) − σgab ; fa = −∇aK

fab local, quadratic in Kab

Projections of conservation law ⊥ and ‖ to surface:

• Shape equation: ∇afa − Kabf
ab = 0 is

−∇2K +
1

2
K(K2 − 2KabK

ab) + σK = 0

• Bianchi Identities: ∇afab + Kabfa = 0

- Consequence of tangential defo ≡ reparametrization on X

- not so if geometry is constrained or
freedom there are material degrees of living on surface

• Sphere without constraints: Kab = gabK/2, K constant

Constraints set up stresses



INCLUDE METRIC CONSTRAINT

Deformation preserves metric: construct

HC[X] = H[X] − 1

2

∫

dA T ab (gab − g
(0)
ab )

Stress fa a sum of two terms: fa = fa
Bending + T ab eb

Constraint introduces tangential stress proportional to T ab

Stress no longer depends only on geometry

In equilibrium, fa is conserved: ∇af
a = 0

Normal projection: EBending − KabT
ab = 0

Tangential projection: ∇aT ab = 0

Fix metric ⇒ δX can only change extrinsic geometry



SHAPE EQUATIONS FOR CONE (Müller, JG 2008)

Surface determination:

κ′′ +
1

2
κ3 + κ + κr2T‖ = 0

T‖, T⊥, T‖⊥ are projections on tangent t and radius u

Consistency ⇒

T‖ = −
C‖(s)

r
What’s left is Euler Elastica on sphere

∇aT ab = 0 ⇒

T‖⊥ =
C ′

‖ ln r

r2
+

C‖⊥
r2

T⊥ =
C ′′

‖
r2

(ln r + 1) +
C‖
r2

+
C ′

‖⊥
r2

+
C⊥
r

C’s functions of s
Circle: C‖ constant; expect C⊥‖ = 0 in absence of external torques



FORCE,TORQUE and BOUNDARY CONDITIONS

Response to X(u) → X(u) + δX(u) (Capovilla&JG 2002,JG 2004)

δH =

∫

dA E n · δX −
∫

dA∇a

[

f
a · δX +

∂H
∂Kab

n · ∇b δX

]

Equilibrium response is a divergence

Boundary conditions changed wrt fluid membrane: δX needs to be con-
sistent with isometry

Cone δX = ZC + ZT

ZC = r(ΨC(s)t + ΦC(s)n) , Ψ′
C + κΦC = 0

ZT = ΨT(s)u + Ψ′
T(s)t + ΦT(s)n , Ψ′′

T + ΨT + κΦT = 0

Boundary of fixed r:

ΦT : C‖⊥ = 0

ΦC: C⊥ = (κ2/2 + 1)/R

Limit R → ∞, T‖ = −T⊥.

∮

dsf⊥ = 0



STABILITY:

Deform equilibrium cone into another with same surplus

δ2B =

∫

dAΦLΦ , Φ = n · δX

L = (L0 − 1
2

κ2 + C‖)
2 + V (κ) is self-adjoint, V not positive;

L0 = ∂2
s + 1

2
(3κ2 + 1 − C‖) Not obviously tractable!

Isometry: Ψ′ + κΦ = 0:
∫

dsκΦ = 0

Look at LΦi = λiΦi, i = 1,2,3, . . .
Sufficiency: λ1 = 0 ⇒ Configurations are stable.

Zero modes of L associated with rotational invariance: Φ = n · Ω × X ≈
t · Ω. One such is κ′ (also zero mode of L0).

In practice: decompose Φ into finite number of Fourier modes,
use Gram-Schmidt to implement orthogonality to κ

L no longer diagonal, diagonalize to find all λ̃i are positive

Conical equilibrium states free of self-contacts are stable
wrt isometric deformations preserving cone



WHEN THE CENTER CANNOT HOLD

• There is a surprise:

Remove disc surrounding apex

Conical annulus relaxes into some other flat geometry

Conical ground state is unstable wrt deformation
destroying the cone

New surface is tangent developable

Why is this interesting?

Truncated cones can be glued together to model non-flat surfaces:

How does a surface of constant negative Gaussian curvature bend?



PSEUDOSPHERE: candidate axisymmetric ground state

Maximum size ∼ K−1
G set by curvature

⇒ ∃ critical size beyond which axial sym-
metry is incompatible with curvature

R = eℓ, ℓ arc-length along meridian
⇒ R′ increases exponentially to R′ = 1
on boundary rim

If surface grows, geometry must ripple

Approximate by a telescope of conical
annuli with increasing surplus angles

KG 6= 0 captured by geodesic curvatures

Instability toward tangent developable al-
lows cascade of bifurcations through n =
2,3, . . .

Consistent with Hilbert: complete Sur-
face KG < 0 cannot be embedded in R3



ENDNOTE

Interesting new behavior when
a surface bends with local con-
straint on metric

What we learn from conical toy
models lays a foundation for un-
derstanding more general mor-
phologies

Issues of relevance to biological
membranes, viral capsids, ...

Challenge: Describe fluctuating
constrained geometries

Papers available on arXiv with ref-
erences

Coworkers: Martin Müller & Martine Ben Amar(Ecole Normale Superieure),
Riccardo Capovilla(CINVESTAV), Markus Deserno(Carnegie-Mellon), Pablo
Vázquez(student at UNAM)

Special thanks to Martin


