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Optical Contrast Visually – Simple Attract/Repulsion

Basic Attractive/Repulsive vdW-Ld Interactions Mirr or Buoyancy

Density ~ Dielectric/Optical Property Contrast or P olarizability

Darker Colors Represent Higher Density/Polarizabili ty And Vice Versa



4

DuPont Co. Central Research R. H. French © 2008      October 16, 2008 VuGraph  4

Introduction: Assembling Nanoscale Devices

CNT Processing And Assembly Technologies
• Separation By Metallic vs. Semiconducting, 
• Sorting By Chirality
• Placement Of CNTs
• Alignment Of CNTs

Can vdW-Ld Interactions Be Used For CNT Processing?
• London Dispersion Interactions: Universal, Long Range

ab Initio Optical Properties Of CNTs
• Opens The vdW-Ld Door For Previously Unsolvable Systems

Solid Cylinder vdW-Ld Formulations 
• vdW-Ld For Optical & Morphological Anisotropy
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Working Separation Example: Zheng Anion IEC Experim ents

Anion Ion Exchange Chromatography: Stick/Strip Via Screening Electrostatics

Initially (2003) Separation Only Between Semiconduc tor And Metallic Classes
• M. Zheng And Et. Al., Science, 302, 1545 (2003)

Years Later (2006), Separate Semiconductors Of Iden tical Diameter/Band Gap 
• M. Zheng And E. D. Semke, J. Am. Chem. Soc., 129, 6084 (2007)

Question: Do Known SWCNT Band Gap Trends Also Contr ibute 
A Chirality Dependent Vdw-ld Interaction To Assist T his Process?
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Origin of The vdW-London Dispersion Interaction
London Dispersion Interactions
• Of the Van der Waals Interaction
• Thermodynamic Free Energy

Arises From Oscillating Dipoles
• Interatomic Bonds of Electronic Structure

Jcv => London Disp. Spectra

A - Hamaker Constant
• Interaction Scaling Constant

FvdW-Ld - Dispersion Force

Attractive Force: Nonwetting
• Positive Hamaker Constant

Repulsive Force: Wetting
• Negative Hamaker Constant

zJ = zeptoJoule = 10-21 Joules
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R. H. French, J. Amer. Ceram. Soc., 83, 9, 2117-46 (2000). 
R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem., 60, 251-63, (2007). 
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Full Lifshitz Quantum Electrodynamics
Not Applicable 

For CNTs
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SWCNTs: All Layers of Abstraction Part A

P. Lambin, C. R. Phys . 4, 1009 2003.
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SWCNTs: All Layers of Abstraction Part B



Ab initio Optical Properties
Of

Graphene And SWCNTs

Density Functional, OLCAO Calculations

Of 

Electronic Structure and Optical Properties
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Optical Properties 1: Introducing ab-initio Method

Needs εεεε’’ Spectra From 0 To 30+ eV

Many CNT Studies Use
Tight Binding Approximation 

• Forces An Unrealistic Symmetry Of 
Conduction/Valence Bands 

• Distorts Optical Properties
• Typically 0-6 eV

ab initio Electronic Structure Calculation 
• Basis Set Up To 3d And 4s
• ALL Single Electron Transitions From 0 To 45+ eV
• Robust: Al2o3 ab initio And Experimental Results Are Comparable To ~ 30 eV

• W. Y. Ching And et. al., J. Phys. Condensed Matter 16, 2891 (2004)
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Graphene: Partial Density Of States
ππππ Bond Arise From Out-Of-Plane p z Orbitals

πUpper Valence & Lower Conduction Bands

Transport Properties Of CNTs From ππππ Bonds
• “Band” Metals vs. “Optical” Metals (Drude Metal Peak)

Optical Properties From ππππ & σσσσ Bonds

ππππ Bond: From p z

σσσσ Bond: From Sp 2 Hybridization s, p x, py

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

De nsi t y  Of  S t a t e s

pi

sigma

total

Density Of States

ππππ∗∗∗∗
ππππ

σσσσ∗∗∗∗

σσσσ



13

DuPont Co. Central Research R. H. French © 2008      October 16, 2008 VuGraph  13

Graphene: Ab initio Optical Properties

Graphene: A Semi-metal
• In Plane

Low DOS At Gap
• No 0 eV Drude Metal Peak

Higher Energy Transitions

• From σσσσ (s, px, py) Bonds

• sp2 Hyrbridization

σσσσ ⇒⇒⇒⇒ σσσσ∗∗∗∗

ππππ ⇒⇒⇒⇒ ππππ∗∗∗∗

ππππ0

σσσσ0

Anisotropic Optical Properties
In-Plane Direction
Out-Of-Plane Direction
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OLCAO Band Structure Calculations
• Density Functional Theory

Atomic Coordinates
• From Rolled Graphene
• No Structural Relaxation

Metal vs. Semiconductor

Elution Experiment

Multi-wall CNTs

“Metals”

60 SWCNTs
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60 SWCNTs

Symmetry Allows Us To Extend To Large Armchairs And  Zigzags

Large Circumference SWCNTs Close To Graphene Sheets
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[6,5,s] & [9,3,m] SWCNT: Uniaxial Optical Properties

Radial Directions Have Similar Properties

Axial Directions Very Different
• Due To Metallic Axial Property Of [9,3,m]

• [9,3,m] ε” Max of 933 at 0.04 eV
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London Disp. Spectra Of [6,5,s] & [9,3,m] CNTs

LDS Crossings => Complex Behavior
• e.g. Surficial Films Of Water On Ice

Water vdW-Ld Spectrum Max of 78 at 0 eV

[9,3,m] vdW-Ld Spectrum Max of 333 at 0 eV

)(" ξε i



Optically And Morphologically
Anisotropic 

Solid Cylinders

R. Rajter, R. Podgornik, V. A Parsegian, R. H. French, W. Y. Ching, Physical Review B., 76 , 045417 (2007).  

Non-retarded Solution
In Near And Far Limits
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Formulation: Derivation & Comparison to Simple Syst ems
70+ Equation Derivation.  Here’s The Punch Line 

R. F. Rajter, R. Podgornik, V. A. Parsegian, R. H. French, W. Y. Ching, Phys. Rev. B 76, 045417 (2007). 

R. F. Rajter and R. H. French,  J. Phys.: Conf. Ser . 94, 012001, (2008).
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The Devil’s in the Delta’s
All Systems Have Identical Summations

Changing ∆∆∆∆’s Changes How The Optical Contrast Is Weighted

Hamaker Coefficient Dependencies
• Material Properties (Optical Inputs)
• Geometry (Changes Spectral Mismatch / Weighting Functions)

R. F. Rajter, R. Podgornik, V. A. Parsegian, R. H. French, W. Y. Ching, Phys. Rev. B 76, 045417 (2007).
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Separation (S2SS) And Angle Dependence
Equally Important: Surface-To-Surface Separation Sc aling

Optical Anisotropy Determines Angle-dependent Inter actions Of Rod-Substrate

Optical Anisotropy & Shape Affect Angle-dependent I nteractions For Rod-Rod

R. F. Rajter, R. Podgornik, V. A. Parsegian, R. H. French, W. Y. Ching, Phys. Rev. B 76, 045417 (2007).
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Hamaker Coefficients Versus distance

Near Limit Is < 2 Diameters,  And Far Limit Is > 2 Diameters
Semiconducting CNT’s Hamaker Coefficient Larger Tha n Metallic
Far Limit Hamaker Coeff.s Larger Than Near Limit

• Due To ∆ parallel

Far LimitNear Limit
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Alignment Forces of Interacting Rods
vdW-Ld Torques Arise When There Is A Preferred Inte raction Direction

Again, Any Rod-substrate Alignment Is Purely Due To  Optical Properties

Rod-rod Alignment Can Have Optical And Geometrical Effects



vdW-Ld Interactions Of SWCNTs

vdW-Ld Interactions In The Elution Experiment
Mixing: Hollow Cylinders And Large Diameter CNTs

Multi-wall Carbon Nanotubes

Datamining 60 CNTs: Trends And Classification
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We Can Now Answer Elution Question: 
Optical Properties & vdW-Ld Vary With Chirality

Separation Is Repeatable And Distinct
Even Between SWCNTs Of Identical Band Gap And Radiu s

• e.g. [6,5,s] Versus [9,1,s])

Analysis Of The Optical Properties Shows There Is A  Difference
The Overall Theme

• Chirality => Geometry => Band Structure => Optical Properties => vdW-Ld Interactions

Consider Axial Directions
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Elution Experiment Example Summary

There Is A 5% Difference In The Hamaker Coefficient s For [6,5,s] And [9,1,s] 
• This Correlates With The Experimentally Observed Trend

Even Though These Tubes Are Almost Identical
• Their Dispersion Interaction Distinguishes Them

Demonstrates The Utility Of Full Spectra Optical Pr operties Of Materials

Now Consider Other Materials To Enhance Or Mitigate  Elution
• By Calculating the Hamaker Coefficients Of A ( Substrate | Medium | SWCNT ) 



Mixing: Hollow Cylinders 
And Large Diameter CNTs

Multi-wall Carbon Nanotubes
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Real SWCNTs Versus Solid Cylinders

Real SWCNTs Are Hollow And Have Surfactants
• Large Diameter CNTs Could Be Filled

Current “Solid Cylinder” Formulations Have No Means For Such An Input
• No Add-a-layer Like Solution Exists (e.g. Plane-plane Geometry)

However, Can Create Effective “Bulk Averaged” Spectr a By Optical Mixing
• Typically Done For Optical Properties Of Composites (e.g. Metal In Glass)
• Using Bruggeman Effective Medium Approximation
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Blending the Components Into One Material
Multi-component Materials Can Be Blended Into Bulk Average

• Use Effective Medium Approximation

One Key Detail Remains…
• What To Use In Near Limit, At Contact?
• What To Use At Far Limit?

A Typical Rule Of Thumb Is Thus:  
• If S2ss > 2 * Feature Size, Mixing Can Be Used
• If Close To Contact, No Mixing Because Outer Material Interactions Dominate
• In Far Limit Use Mixing Result For Optical Properties
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EMA + Parallel Capacitor Mixing
The Different Directions Of The SWCNT

• Have Different Connectivity

Sensible Approach: 
• Parallel Capacitor In The Axial Direction 
• Bruggeman Ema In The Radial Direction

All Models Converge For Very Small Optical Contrast
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Multiwalled CNTs By “Mixing” The SWCNTs
Example: Making MWCNTs out of SWCNT components.

Consider A 
[16,0,s + 7,0,s]

ZigZag MWCNT 

[16,0,s] with

[7,0,s] inside

Compare Direct
LDA Calculation
Of MWCNT

With Mixing Of 
[16,0,s] & [7,0,s]
Optical Properties
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Multiwalled CNTs By “Mixing” The SWCNTs
Example: Making MWCNTs out of SWCNT components.

Consider A 
[16,0,s + 7,0,s]

MWCNT 

[16,0,s] with

[7,0,s] inside

Compare Direct
LDA Calculation
Of MWCNT

With Mixing Of 
[16,0,s] & [7,0,s]
Optical Properties

axial

axialradial

radialradial

axial



Datamining 60 CNTs: 
Trends And Classification
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Datamining: ab initio Optical Properties Of 60 CNTs

We Have ab initio Optical Properties Of 60 SWCNTs  
• And Numerous MWCNTs

Consider The 5 CNT Types
• “Metals”: Armchair, Zigzag, Chiral
• Semiconductors: Zigzag, Chiral

How To Understand Trends In vdW-Ld Interactions?

Explore Trends With CNT Radius & Chirality
• Dielectrophoresis Experiments Have Already Shown A Correlation 

• Of Interaction Energy With SWCNT Diameter1

What Is A “Metal”?

From Band Structure Or Transport Perspective
• Want Electron Transport At 0 eV

From Optical Property, Drude Metal Perspective
• Want Large Drude Metal Peak, Near 0 eV, In Axial Direction

1. H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, H K. Schmidt, J. Am. Chem. Soc. 2006, 128, 8396-8397
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From [n,m] to Band Structure
SWCNTs: Small Difference In Chirality, Big Changes In Observable Prope rties     

Small [n,m] Change Determines XYZ, Cutting Lines, Band Structure, εεεε’’, 

vdW-Lds, Hamaker Coefficients, And Total Energies.

P. Lambin, C. R. Phys . 4, 1009 2003.
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A New Classification
Many SWCNT Classifications Schemes Exist But…

• Tend To Focus On Bandgap Region 0-5 eV
• Primarily Concerned With Electronic Conduction

vdW-Ld Interactions Equally Dominated By 5-30+ eV R ange

0-5 eV Range Is Highly Correlated To Electronic Con duction
• (i. e. Metal, Semiconductor, Or “Small-gap” Semiconductor)

5-30 eV Range Is Highly Correlated To Structure 
• (i. e. Zigzag Vs. Armchair Vs. Chiral)

Merge The Two: The vdW-Lds Classification = 

Ec Conduction (Metal Vs. Semiconductor) + 

Structure (Armchair, Zigzag, Or Chiral).
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ZigZag vs. Armchair SWCNTs
Notable Trends Both Within And Between Classes From  0-5 eV

Notable Trends Between Classes From 5-30 eV
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“Drude” Metal Peaks vs. Classification Type

ZigZag

Chiral

Armchair
& ZigZag
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“Drude” Metal Peak Height vs. CNT Radius
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Classification Of CNT Types: Optical Perspective

DOS

Interband

Optical 

Properties

Band Crossing                  Band Touching                    Band Gap
No Drude Metal Peak            Drude Metal Peak?               Drude Metal Peak

Semi-metal                         Metal or Semi-me tal            Small Gap Metal

Electronic Conduction And Optical Perspectives:  Co nfusing Terminology & Classifications
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Armchair “Metal” CNTs:
Semi-metals

Radial Direction
• CNT: Red

• Graphene Axial: Green
• Graphene Radial: Blue

σσσσ ⇒⇒⇒⇒ σσσσ∗∗∗∗

ππππ ⇒⇒⇒⇒ ππππ∗∗∗∗

ππππ0

σσσσ0
Axial Direction

• CNT: Red
• Graphene Axial: Green

Animations: Large Diameter To Small
• Have [3,3,m] to [24,24,m]

Large Diameter
• Simple Trending Behavior

More Bond Strain/Re-hybridization
• At Small CNT Diameters

Axial Direction: No Drude Peak
• Semi-metal, Not Good Metal
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Armchair “Metals” Trend Stability
SWCNTs Below A 0.6-0.8 Nm Radius Break From Trends

• Exhibit New Features

Greater Variation = Greater Ability For Chirality S pecific Interaction
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SWCNTs 2: Armchair Example εεεε’’ to vdW-LD Spectra
Manipulations Or Variations In εεεε’’ Have Systematic Effects On vdW-Ld Spectra
SWCNTs Have Known Band Gap Variations With Classific ation And Radius
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Armchair Example of System Design (Buoyancy)
System: Bare SWCNT + Polystyrene Substrate + High I ndex Medium 

A Critical Radius Of Attractive/Repulsive Divide

Changing The Index Can Change The Critical Radius L ocation

Multi Stage Experiments CouLd Create Mono-disperse Populations

More Parameters To Explore (Surfactants, Mwcnts, Et c.)
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Conclusions
van der Waals–London Dispersion Interactions Of Car bon Nanotubes Requires 

• ab initio Optical Properties From Band Structures
• Non-Plane Parallel vdW-Ld Development

Solid Cylinder Lifshitz Formulation
• Forces and Torques

CNT Optical Properties Differ
• Axial versus Radial
• ππππ ⇒⇒⇒⇒ π∗π∗π∗π∗, σσσσ ⇒⇒⇒⇒ σσσσ ∗∗∗∗ Transitions

Strong Dispersion Torques & Forces
• Optical Anisotropy γ And Optical Contrast ∆

vdW-Ld Of CNTs Vary With 
• Type: Armchair, Zigzag, Chiral
• Character: Drude Metal, Semi-metal, Small Gap Semiconductor, Semiconductor

Each CNT Chirality ⇒⇒⇒⇒ Unique Properties And Interactions

Anisotropic vdW-Ld Interactions Provide A Method
• For CNT Separation By Type And Chirality
• For Mutual Alignment Of CNTs
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Conclusions
Visually


