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Failures of common van der Waals theories in the asymptotic (widely-spaced) limit:
some surprising force laws for anisotropic low-D, zero-electronic-gap systems
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Failures of common theories for condensed limit (not widely spaced)?
Conclusion: need new functionals for soft-matter energetics
JFD et al, Phys Rev Lett 96, 073201 (2006), cond-mat/0502422




vdW betw. spherical atoms: matter fluctuation approach

Random zero-point (or thermal)
dipole d on #1 initiates the process

: d
Fieldon#2: F, = —03
Field Induces dipole on #2: d, =—«, =3
d back-field on #1: d, _da,
, generates pback-fiela on#1: F =- ¢ — X
S da
Energy of F, with original dipole: E oc —Fd =— RGZ
' <d2>0‘2 (a,hw,)a
Time-averaged energy (E)=- S 1 R6O 2 by SHO model

From 2nd order Pertn th.

More accurate: E =-C R_G, C. = B_h o (iU)(l (lU)dU Incl. ZP KE
6 6 g 1 2
0

This form isotropic only



ORIGIN OF DISTANT VDW (DISPERSION) FORCE

Spontaneous
pOIe ‘ O

E(Z) - _{o - (X (xlh(l)o
2
R3 R3 R®
A correlation effect, highly nonlocal so LDA & GGA FAIL

Occurs already in 2nd order pert" theory for the energy

Or via theory of response (polarisability, coupled plasmons)

Weak but ubiquitous - additional to covalent, ionic bonds



Electromagnetic retardation

Above treatments assumed
instantaneous Coulomb

C
Interaction. In fact there is a
@ @ @ delay 7y = R/C
I T)ignt >> Te resp, then the original
< > random dipole has decayed by the
time a return signal arrives,

R resulting in a smaller attractive
energy.

End result is to replace o In
previous results by 1/t so that

Retarded Lase retarded regime OLlOLZhC
generally known as E ~— ~
“Casimir effect™: Condition for this to occur:

can get from e.m. R >> ¢ty ey~ (3.109)(27.1049) ~ 210 m

ZP energy.

Treat non-retarded case from here on



Conventional view:
“universality” of asymptotic vdW

& [
< |

“Take vdW as given between atoms or

1

“Then total E,, IS the sum of
pairwise contributions

Evaw =— Z Ce(ij)Rij_Gn

i i

“Triplet and higher terms —e..g.  E,,,"” ==Y C,"'R.“R, R,
I, ],k
do not make a qualitative difference.”




Standard vdW theories for macroscopic systems
(non-overlapping)

Thick slabs, L, W >>D
> R° (see Mahanty & Ninham book) gives

E/Ax—A*, d% [, d*r, " =—CD *

Lifshitz theory: (JETP
2, 73 (1956)) uses a

X2

E o0 0O
} —~-KaD ™~ . .
random field method A !! alu)+1e0u)+1 4

dxdu

and assumes a local g(lu)-1g,(lu)-1

dielectric function
Most present functionals similarly give D for this geometry v




More simple “standard” results for extended systems:

nanoscopically thin slabs, wires

W>>D>>Dh SR

>R gives

-1 2 2 —6 4 W
E/Ax-A jszd r1j81d L, =-CD
V.
D
| >>D>>D D
L SR gives E/Loc—[,dxh,* =—CD*

Different powers of D emerge, but these results are “universal” :
l.e. they come from adding pairwise R contributions.

Most new functionals agree with this, and indeed some are constructed
to give XR°, but actually XR-°is WRONG for metallic cases this page.




Distant vdW interaction from coupled-
plasmon ZPE / RPA - preview

J. F. Dobson, A. White and A. Rubio, Phys. Rev. Lett. 96, 073201, Feb 2006

L<<D >>
R <L—.D 2A <<D
W>>D A
AL 47
D
AE, ~ const D2 L>>D
W >>D (metallic or insulating) D
AR
AD™? conducting |
AE,~  BD™ insulating AE KD™[In(D/A)]** conducting
CD™ pi—conj (graphene) ° CD® insulating

eInsulators, 3D metals: ZC,R*° gives qualitatively OK results, but

*Y>CsR° can be very wrong for anisotropic nanoconductors where electrons can move
large distances leading to large poorly screened polarizations




What causes the strange power laws E=-CDP ?
Spatial Nonlocality of the response of the matter (electrons) to fluctuating electric fields

A: Strange power laws at “large” separations D (but still not in the reqime of E.M. retardation)

The examples here come from the anomalously large response of charge fluctuations (e.qg.
plasmons) that have a very long wavelength (g~D-1—0) and low frequency. The
nonlocality means that dielectric function &(g,®) depends on g, when g—0.

(ie. € is g(r,r ',») in position space, NOT oc8(r-r ')

In metals, one might think that electrons respond nonlocally: but in 3D there is essentially
complete screening of external fields, which cancels this out. In fact for a 3D metal

(q,0)=1-V(0)x0(9,») = 1 — [4 me?/g?][n,0°/mw?] = 1 - w?/w? INDEP OF q (spatially local).

However in LOWER-DIMENSIONAL metallic structures, Coulomb screening is incomplete,
and the dielectric function can be g-dependent at small g and ®

e.g. for a 2DEG, &(q,®)=1-Vyp(q))x0(a),®) = 1- [2re?/q,][N,p0)2/Mw?] = 1- w,5(0))%w?,
®,p(al) = [2mn,pmig ]V

B: Strange power laws at “small” separations (but electron clouds not yet overlapped

This can occur when separation D ~ (char electronic length 1) e.g. Ap,, for e-h plasma (semic.)



When is E, 4 NOT ~ ZC;R;® for large R;;?

(i) System is large in at least one direction, so that long-
wavelength fluctuations (q — 0) are possible

(i) System is metallic or has zero electronic gap, so bare
polarizability g%y, becomes large at low ® and g

(i) System is nanoscopic in at least one dimension, so that
coulomb screening Is incomplete and does not destroy the
divergence of the polarizability gy, at low ® and g. (¢ is nonlocal)

= Highly anisotropic soft near-metallic matter
e.g. conducting nanotubes
layered graphitic systems, intercalates etc.)

Where free plasmons are present, they will be gapless (o(q)—0 as g—0)

JFD et al, PRL 96, 073201 (2006), cond-mat/0502422, Surf Sci 601, 5667 (2007)
1IJQC 101, 579 (2005), PRB 77, 075436 (‘08); 165134 (08), cond-mat/0809.0736



Electronic response functions in TDDFT

(exact but looks like mean-field theory)

Density-density response function 1y,
on(T)exp(—iwmt)
4 — j 7,(F. 7o) SV (T ') exp(~imt)dF’

Bare Resp Xks = Xa—0 to ext field (one-body physics)

R Bare Response to int field

x, (1,1 L) = Yus (T, T a))+j;(KS(r r,o)< = Xo"'O_OXo:WxX?»
= RPATDH

2
x A& S o) |7, (F"F 0)dF " dF "
r-r’ y
Eff. Internal field =~ (beyond-RPA MB physics)




EXACT ADIABATIC CONNECTION-FDT APPROACH FOR
CORRELATION ENERGY (INCL VDW)

2

_Idkjd?’ rd’r -‘? H{< SA(F)SA(F') >, —n(F)S(F-T)}
\

Zero-tempFluct-dissipation thm

v
XC——jdk_[d3 rdr'— 2% {[——jxx(r P w=iu)du] - n(r)8(r—r)}
7T ' ACF-FDT (exact)

.

2
Exzégdxjd?’rd?" : [——Isz(“' :iu)du]—n(F)S(T—?')}

=71
Insert expr. for y, from {¢} = E, =E"F({¢;})
Our E, . contains EXACT DFT EXCHANGE (hence covalent bonds)

ﬁl

Can show yrpa gives asy -C,R* result for vdW betw small systs.



ACF/FDT STARTING WITH x5 CONTAIN ALL THE
BASIC CHEMICAL AND PHYSICAL FORCES - I

.
:_jdxjd?»rds ‘r_r‘n“m( ® = iu) — s (F, T = iu)]du

RPA = vdW (Casimir-Polder): . .

E.g. for isolated spherical systems In the dipolar approx,

j A, (iu) A7 (iu)du

. RPA (2)
6. =% =BT =-
A A TCR6
This is the exact result from perturbation theory except A— ARPA

Result does not appear to be true for RPA+approx f, !

JFD pp 121-142 in 'Topics in condensed matter physics', Ed. M.P. Das, (Nova, NY
1994, ISBN 1560721804. ) ( Hard to get: reproduced in cond-mat/0311371)



CORRELATION ENERGY VIA RPA-LIKE SCHEMES
*\Want electronic groundstate energies of extended systems,

swith "seamless" treatment of all forces incl. vdW, at any separation

*RPA Is a response-based energy scheme: gets covalent,
electrostatic bonds and does not rely on non-overlap condition

RPA

X, = 5RPA_1Z0 = (1_\//17(0)_17(0

= 5+ TSI = O oS 4 C omm o>

e XotXo Vi X = YXotxo V, Xo

E.rea = ;;_ J.Ol d/f Iow du Tr (Vz *(ZRPAA - Zo)) = %J.:dlj: du Tr ((gRPA,/i_l _1) Zo)

zzi_[:duTrln(l—V“;(O) +A (A indep of separation)
T

Efrpa= D @ = @ + @ +. ... Infinite Sum of rings




176 I. E. Dgyaloshinzkii ef al. o the

vabies of the products of the operators will ot reduce to averages by pairs.

Wa now proceed ss follows. In the perturbation seres for the free
energy (or for the Green function of the long wavelength photons) the
particls operators appear only m combinations of the form

{TI{J[.rh Ty, "'1]’5':"2: Talp{ra 72)} )
(T Ay, rddlry m (v maidb(re, i, rylb{rg, Tyl (r by, wal} ), ete.
1.6. the nurnber of operators under the averagmg sign 1 always divisible
by four, and the operators always appear in pairs of the type dle, e, T
We subtract from the average value of the product of esght operators
the quantity

(T fifiiry, rohb{ry, e g Tolp(ry, ol P b, Tdra, raRb{ra dblrg, b
+ (T (g, )y, AN LTS {'Tr{'.'r'{"'z- Ty, "'EJ‘IE'[W rablreTd})
A (T L, T ey w7 r 7)) CE i 7alib{ gy b (rgs TPy 7)1
(i.e. that vale which we would have obtmned if the averaging had reduced

only to all possible averages by fours of the above type), and we call this
differenee the wreducible quadrilateral, denoting it by a dashed square.

RPA i
. 7
B I e ?_d o
§
r @
. ,
r.f i "||I
|
\.\- rr
n‘ S
L4 e S
S e
'.f""\.. e .-
W ( E D
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Thus for the approximation ko< 1 onky disgrams of the form Tle) mve
a uurrentmn_tﬂ the free energy. The corresponding expression for the

Farn o




ACF/FDT contains plasmon zero-point energy
see e.g. JFD et al, 1JQC 101, 579-598 (2005)

E, RPA :2_n|mjTr(|n(1—xO*vcou,))d@+A, A indep of D.

h e oOa _
:Z—RJ-@%a ldo +A, a(w) = Det(1—o* Veour)

a(w) has poles at plasmon frequencies o; where screenmg

equation has free oscillation solutions.  Residues of — 08 -1

these poles are 1. o’
Ime Thus an APPROX for E, is sum of semi-residues :

i h h
g_semires _ 7\ N~ N7
XC o ZI: | ZI: 5 P

at

Rem
| ; X '

If v, IS exact or at least obeys time reversal invariance, 3 better result =




RPA ENERGY AS SUM OF PLASMON ZERO POINT ENERGIES: |

t Im(m)

JFD et al,
1JQC 101, 579 (2005)

JFD, J. Comp Th. Nanosc.
Fig. 520 Deformation of original contour ( == == m) t5 just above positive real axis (T—) In preSS (OCt 08)

By causality, all singularities (e g. poles x and cuts ) must lie on or below the real frequency
axis.

e , ¥ “indep of separation
Ef_,m =— [ d Im [ dANTr[(1— Ay, * vm,)"l * Yo EV 0]
. ZTT w0 w0 ’ :
= ;—ﬁfm I': doTr[In(l—1y,*v_,.)]+A. A integration done analytically
2n ¢
+h o (= 6 ) o .
EX = = Im [ [m JTI'].II((]— v, *v.,))do + A by partsin o integration
2n 0L do ’
h “0 ¢
——Im| do (m Jln Det (1=, *v_,))+A
2m; 0 . O, T
hi @ Oa

=—1Im fﬂTﬂ_ldfﬂ+ﬂ‘a HEDEI(I_XU*VCGEEE)
2 Y Jo



RPA ENERGY AS THE SUM OF COUPLED PLASMON ENERGIES: Il

' o) [ Tonlw)

If* ¥(-®) = x(w), contour can be reflected about the origin, giving
gren L 7 |mj a) a'dw+A, a=Det(l- V)
227 0 a)
In general, the function f(®) = ® a(®w)* da(w)/do behaves near its poles o; where
(o) ~a (w-m;)* as

da —a. — ).
f ) = a)a_l — ~ m.a -1 ) I ~ i
( ) d 11 ( | ) ( . I)2 . -

Thus the residues of f(w) at o = w; are Ri=-o;

*“ This will not be the case for models containing phenomenological damping.



RPA ENERGY AS THE SUM OF COUPLED PLASMON ENERGIES: I
J. F. Dobson , J. Comp Th. Nanosc., in press at Oct 2008

ERPA = ;;;I I a)—wa Tdw+A, a=Det(l— V)
* Imf{c)
By moving contour to
pole Im(w) — -0, we collect
LR Y e, s etimegay  (Clockwise) pole
K ———;?m}—* contributions BUT ALSO
noon ] IN GENERAL, CUT
INTEGRALS
...................... > ""“""""".'-......L.....H.............................

ES = 4i Im > (=27i)R; + (cut integrals) +A
T i

:Z%+ (cut integrals) + A



RPA ENERGY AS THE SUM OF COUPLED PLASMON ENERGIES: IV

Following applies even to infinite systems provided the model for density-
density response y obeys full time reversal invariance, y(-®) = y(®)

E ™ _Z%-F (cut integrals) + A

/ /‘ '\ Independent of

separation D, as
Sum of_plasmon Cut term can Dioo
Zero point energies important in mesoscoplc

systems — e.g. cut gives
the whole answer for
vdW attraction in Dbi-
graphene

For finite systems Furche (preprint) has shown that sum of
excitation zero-point energies gives ERPAexactly. The
cuts above come from the continuum excitations

(continuous line of poles).



Nanotube attraction |: single wire/tube

(Ia) Conducting " A=2nl (b) semiconducting
ZAT(Z__E CECOLOOOODLOEE®
S\S/rt\Ot =%0(0,®) = nquz(mooZ)‘l %0(d, ®) = ﬂquz(m((’JZ - (002))_1

RPA equ.: dn(q, ) =;(0(q,a))(é\/eXt +W01D(q)5n(q,a)))

s T Gy W@ =2 A

Plasmon fregs are zeros of eRPA=1—-W,,5 %, = 1 — (const)g?|In(gb)|/®?

2 2 2

c.f. &P=1- 4;[5 mqa)2 :1—(02)—32? indep of g .. spatially local

TR RPA 2 . 2
wRPA :oolD(q)zq\/anDezm Lintb™g ™) ® =\/601D +0g

quasi-acoustic plasmon optical plasmon



Nanotube attraction Il: 2 parl'l tubes (D >> A)

2A :(( g — — ?}D

BB BB D BDE®D D
s oo®

dxe?
2

Tube-tube coulomb int.  Wy(@)= exp(igx) = 2¢”K,(qD)

RPA Eq of motion for 6Ny = %0(0, ©)(Wp (a)dn, + Wp (q)8n5)
electron density pert"s: 8N, = 10(9, ®)(Wp ()dn; + Wy (q)dn,)

Coupled plasmon frequencies w,(q) = \/a)oz +q°m~n, (W (q) =W, (q))

i leviw gy 1 =2 o
vdW energy in RPA ~E (D) = = j_oo 2(00+(q)+co_(q) 20yire (0)) dg

: . (2m™n,e*9°K, (D)) 2mnpe?) ..
Insulating case %zjo—( 020 k(D) dq—[( 7 )IO y“Koz(y)dy];s

3/2 3/2
4a, ;



Nanotube attraction I11: conducting case (®0,=0)

vdW energy in RPA %EVO'W = f (@, (@) +®_(a) — 20y (@) ) dg

E iz, lmf [16l(\V (0.0)+V(.0) +¥ (3.0)-V (a.0) -2V (4.0))¢q
J' where V(q,0) = (26°)*V,(q) =-In(A|q]) for |Ag|<<1
===y V(q,D)=(2¢")"V,(q)=K,(aD)
 ——p— T

2
D>>A Use \/a+x+\/a—x—2\/_z—ﬁ, \x\<<a

j xK,2 (x) (In(xD / A))*2dx

-1 2 a2 E A~ Ko2 (qD)
Arh—(2e°n,, /' m) I—Zoq{— dg=- o7 s

4[In(Aq)["*

In(XD/ A))>? (=
z—( ( 2D2>) IO XK, (X)dx = —

(In(xD/ A))~'2
4D°

x=exp( [ xK2()(=Inx)dx / [ xK,(x)dx]=
) ) )



ISSUES FOR NANOTUBE ATTRACTION

Maybe, but g—0 collective modes (1D plasmons) are

Luttinger quuid? same as in RPA (Li, Das Sarma PRB 1992).
Drummond & Needs verified present theory using
Diffusion Monte Carlo — PRL PRL 99, 166401 (2007)

Retardation important?

T

electromag

Only If 272-/601Dplasmon (q D ) Tplasmon = D/C

2
/|n( y>2r- 2o expan? )~ e for (5,5)
V].D b VlD

Still observable at large D where F >>Fsn67

plasmon

For two (5,5) conducting nanotubes length 1 p at D = 24A, estimate F

>10F;r6 and F = 10 pN. Tip !

plasmon

plasmon



| E(Kk,)

Bandstructure of metal Bandstructure of

(e.g. e doped BN

plane)

_ .. —0°n
Zo(0,1u) ~ m*uzo

o=y, q2 diverges if u—0

single graphene plane
(semimetal)

| E(Kek,)

Bandstructure of
single BN plane
(semiconductor)

2

—q

Zo(G,1u) =
’ 2h\Voq° + U’

2

—
m (U’ + w,’)

Z0(0,1u) =

o=y, 9?2 diverges if BOTH q,u — 0

=Y, q? not divergent




Vi h [00] [00]
EvY :EL du‘[0 27q,dq, In| 1-

D

<+“—>

b

T=0K graphene sheets (sketch)

Single sheet

has no free

U, (X,2) @@ carriers. No plasmons exist at

low g and real frequency.
. For vdW use or RPA corrl" energy A

M

1 8(px’py)

Z"

-2

JQ

e’
_|_ -
hv,

Integrand depends on u only via u/v,g. Remaining q dep Is
via g, D. Scaling argument then shows

EVdW [ A =

- (const) 71 v, D3

2 insulating monolayers give D,

JFD et al PRL 2006

2 2DEGS give D%°



CO-AXIAL “POINTING” WIRES / NANOTUBES
JFD and Angela white, PRB 77, 075436 (2008)

Calculation by summing zero-pt energies of coupled RPA plasmons (not pert")

Metallic case has enhanced forces c/w insulating case
New finding: True even at small separations

(non-asymptotic but no e—cloud overlap yet)
Theory gives finite E 4, at D = 0 — I.e. it saturates

1A D L
T e J @)
l 2A <D> < Ll >
19 ) )
l 2A <D> < L2 >
( T )




Method: Numerical sum-of-zero point energies #€)/2 of coupled plasmons

= L = = L . Metallic wires
2A \' |:| |: | | , Ce=——— ———p

Semiconducting / insulating wires

CECOEOOOOOOOLE CLEOCOOEEOEOE
Field due to Pinning to Electron
electrons mimic insulator degeneracy

2

0 2 O°R
~MOQ*R(X)=——D(X)-MQ_ “R(X)-MB* — pressure
(X) X (X) oin R(X) T

c1>(><)=(jD’2 o )&(X-X')&n()(') (RPAI)

-L-D/2 D/2

Sn(X ") = —&(m(xm(X»

. e L
P(X) = NG Coulomb smeared for finite wire width
+

Edisp — zi (hQI(D) . hQ|(D —> Oo)j
2 2



vdW energy for fixed separation d=D/A =2

versus wire length /=L /A
GG A short metal pieces, pair summed

0 ( 10 20 30 40 50 60 70 80 90
0. E+00 \ T T T T T T T T

X
] ) )| Insulator
-1.E-04 -
= =5 = = = s O N -cmcon
2.E-04 -
d=2,p =138 2A+D<[2&
®pin =0 —— v 2A 4 - 0 |
SE0 @pin =0.707 —B— ) o =
= ®pin =1 0 v 2A -1 L2 —
D-4.E-04 - opin = 1.224 ¥ D
wpin=1.732 —K— J2A L.
5.E-04 - pair sum, ¢=2 pieces —®1 P : -
6.E-04 - L >
R metal
7.E-04 -
acos /=LA




EvdWwW

New ZPP dispersion energy saturates naturally at zero separation

| 2A D, L=10A
= .

] )

lZA D, R L=10A |

0.00E+00 % — y
. 4.5 b
-5.00E-04 -
-1.00E-03 -
—e— Ompin=0
-1.50E-03 - .
—=— Ompin=0.707
Ompin=1
Ompin=1.414
-2.00E-03 -
-2.50E-03 -
-3.00E-03 -
L
-3.50E-03

d =D/A



COLLECTED RESULTS FOR PLANAR GEOMETRY

TABLE L ASYMPTOTIC DISPERSION ENERGY OF PARALLEL STRUCTURES
System _F.'-fm:ur fa) wa”,m{m
prediction prediction
Two 1D metals [2] —D*(In(KD))™"* -D~
Two 1D nonmetals |2] -D~ -D~°
Two 2D metals [10,4,2] -p="* D~
Two m-conjugated graphene layers [2] -D~ (at T=0K) -D™
| metallic, 1 m-layer [2] —D~In(D/Dy) -D™
2D insulators [2,11] -D~ -D™
Two thick metals or insulators [4.6] -D™ D™
2D metal and thick metal (b) —p- D~
Graphene (T=0K) and thick metal (b) —D‘3]1|(IJ;"I31] D~
Graphite  Metal [nsulator
Stretching [D—* D—5/2 D
Cleavage D2 D2 D2
Exfoliation log( -EEJD_S D—5/2 D=3
Atom-hulk D% D3 D=3
arXiv/cond-mat/0809.0736 ~ exfoliation

_—

cleavage



When is E, 4 NOT ~ ZC;R;® for large R;;?

(i) System is large in at least one direction, so that long-
wavelength fluctuations (q — 0) are possible

(i) System is metallic or has zero electronic gap, so bare
polarizability g%y, becomes large at low ® and q

(i) System is nanoscopic in at least one dimension, so that
coulomb screening Is incomplete and does not destroy the
divergence of the polarizability g2y, at low ® and g. (¢ is nonlocal)

= Highly anisotropic soft near-metallic matter
e.g. conducting nanotubes
layered graphitic systems, intercalates etc.)

Where free plasmons are present, they will be gapless (o(q)—0 as g—0)

JFD et al, PRL 96, 073201 (2006), cond-mat/0502422, Surf Sci 601, 5667 (2007)
1IJQC 101, 579 (2005), PRB 77, 075436 (‘08); 165134 (08), cond-mat/0809.0736
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