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• Dominant electronic force at small (~ 1 nm)  
separations

• Non-retarded: van der Waals

• Retarded: Casimir
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Vacuum fluctuations plus boundaries

Same result when using the Lifshitz approach
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Importance of the Casimir effect

• Consequences in nanotechnology (MEMS and NEMS)
“Long-range” interaction between moving parts
Possibility of controlling the interaction by engineering materials

• Consequences in quantum field theory
Thermal dependence 

• Consequences in gravitation and cosmology
Background to measure deviations from Newtonian potential at small
separations
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Outline

• Precise measurements of the Casimir force
-Experimental setup
-Minimum detectable force
-Position separation
-Calibrations
-Error budget
-Comparison with theory

• Low temperature measurements
-Experimental setup
-Incomplete results

• Proximity force approximation
-An experimentalist view of the PFA

• Summary
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Experimental setup
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Dynamic measurements
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Separation measurement

Θ−−−= bzzzz goimetal

zg = (2172.8 ± 0.1) nm, interferometer

zi = ~(12000.0 ± 0.2) absolute interferometer

zo = (8162.3 ± 0.5) nm, electrostatic calibration

b = (207 ± 2) μm, optical microscope

Θ = ~(1.000 ± 0.001) μrad

zg

zo is determined using a known interaction

zi, Θ are measured for each position
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Separation measurement
Electrostatic force calibration
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Separation measurement

Electrostatic force calibration
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λLC =(1240 +/- Δ) nm (low coherence), 

λCW 1550 nm (high coherence) in

x

Mirror (v ~ 10 μm/s)

Δx = zi

Readout

-Phases obtained doing a Hilbert transform of the amplitude
-Changes in Δ (about 2 nm) give different curves. 
Intersections provide Δx
-Quite insensitive to jitter. Only 2ΔΔx’/(λCW)2

Instead of 2Δx’/λCW

(Yang et al., Opt. Lett. 27, 77 (2005) 
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-Problems in lack of parallelism (curvature of wavefronts) are compensated when subtracting the 
two phases

-Gouy phase effect is ~                                    , and gives an error much smaller than the random one

(Yang et al., Opt. Lett. 27, 77 (2005) Interferometer

Distance measurement
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Pressure determination

Three effects:

-New equilibrium position
-Softer spring
-Non-linear effects
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Pressure determination
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Determined by:
-looking into the response of the oscillator 
in the thermal bath 
-Inducing a time dependent separation 
between the plate and the sphere 
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Error budget

Random error

Systematic error (fr, R, PFA)

For the first time in our experiment
the random error is smaller than the 
systematic one
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vi: Fraction of the sample at 
separation zi

)(zFvF CS
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AFM image of the Au plane

Roughness corrections

Roughness corrections are ~0.5% to the 
Casimir force at 160 nm

Comparison with theory

(10x10 μm2)
~ 20 nmpp
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Finite conductivity and finite temperature

Comparison with theory
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Comparison with theory

Bentsen et al., J. Phys. A (2005)
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Pressure determination

-Dark grey, Drude model approach
-Light grey, impedance approach

PRD 75, 077101
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Pressure determination
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What are the characteristics of the 
Au used?

Plasma model

Leontovich impedance
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Low temperature measurement
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Low temperature measurement

Setup schematic

LHe can

Springs

Low pressure He can

Magnet

Experimental space
(with positioning stage)
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Low temperature measurement

Characterization
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When compared with previous measurements, 
the error in frequency is ~ 30 times larger at 1.5 K 
and ~ 40 times larger at 4.2 K and 77 K, yielding an
increased error in PC

λLC =(1240 +/- Δ) nm 

λCW 1550 nm 

x
Δx = zi

Readout

Measured error is ~ 5 nm.

Mechanical vibrations

and problems with the interferometer
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Results

Low temperature measurement

Measurements at 1.5 K have the lowest noise

All data seem to coincide with the room 
temperature measurements within the larger
Experimental errors

The error on the low T measurement, 
el (400 nm) = 5 mPa is larger 
than the difference between the Drude
and  plasma models of 2.4 mPa

This statement holds true at all temperatures
and separations investigated
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Proximity force approximation
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Proximity force approximation

Insets:
Fits at z =170 nm

Yield the slopes β, β’
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Proximity force approximation

|β’(z<300 nm)| < 0.4

Not so clear with β. 

If we assume the 
ideal case situation, 

|β(z<300 nm)| < 0.6
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Summary

• Precise measurement of the Casimir force, with random errors 
smaller than systematic ones
This system cannot be used as is to improve on the sensitivity in PC

• Good agreement with plasma model
Differences with Drude model cannot be explained as a problem in the 
separation measurement. It appears that any model with a finite relaxation time 
will give discrepancies when comparing with the Casimir force.
The Casimir measurements are an effective measurement of the Casimir
interaction dependence on T.

• Preliminary data on temperature dependence
Significant noise sources. Main suspects: Mechanical coupling and 
interferometer variations. In consequence the data agree within the 
experimental error with both the Drude and generalized plasma models.

• Proximity force approximation
Experimentally determined the coefficients for the first order in the z/R expansions


