Measurement of the Casimir force on nanoscale corrugated surfaces

Ho Bun Chan

October 1st, 2008. KITP

Outline

- Micromechanical torsional oscillator for measuring the Casimir force.
- nonlinear Casimir micromechanical oscillator.
- Geometry dependence of the Casimir force:

Andreas Hanke

 Experiment on strongly deformed surface: array of nanoscale trenches Up to 30% deviation from pairwise additive approximation A factor of 2 smaller than theory on perfect metals

Collaborators

University of Florida	Bell Labs	
Yiliang Bao	Federico Capasso	Ray Cirelli
Jie Zou	Vladimir Aksyuk	Fred Klemens
University Paris-Sud	Raffi Kleiman	Bill Mansfield
Thorsten Emig	David Bishop	C.S. Pai
UT Brownsville		

Casimir force Hendrik B. G. Casimir 1948

• attractive force between two electrically <u>neutral</u> conducting surfaces

• arise from zero point fluctuations of the electromagnetic field

Energy for each electromagnetic mode with frequency ω : $E_{n,\omega} = (n+1/2)\hbar\omega$

Uncertainty Principle: electric and magnetic fields fluctuate, even at ground state (n = 0)

Total zero point energy:

$$E_{total} = \sum_{\omega} \frac{1}{2} \hbar \omega$$

$$L$$

$$\int \mathbf{Derivation of Casimir force}$$

$$\omega_{kxkyn} = c \left(k_x^2 + k_y^2 + \frac{\pi^2}{d^2} n^2 \right)^{1/2}$$

$$\int \mathbf{Derivation of Casimir force}$$

$$\omega_{kxkyn} = c \left(k_x^2 + k_y^2 + \frac{\pi^2}{d^2} n^2 \right)^{1/2}$$

$$\int \mathbf{Derivation of Casimir force}$$

Casimir force between conducting surfaces:

$$F_{Casimir} = -\frac{\pi^2}{240} \frac{\hbar c}{d^4}$$

per unit area

Quantum effect due zero-point fluctuations on a macroscopic system

Between 2 µm thick silicon plates. At d = 1 µm, $F_{\text{Casimir}} \sim$ gravitational attraction At d = 10 nm, 10^8 times larger, $F_{\text{Casimir}} \sim 1$ atmosphere of pressure.

Non-ideal surfaces: finite conductivity, roughness, finite temperature, geometry effects

Experiments measuring Casimir force:

$$F_{Casimir} = -\frac{\pi^3 R}{360} \frac{\hbar c}{d^3}$$

•Lamoreaux '1997 Torsional Pendulum 5% agreement with theory

• Mohideen & Roy '1998 AFM, 1 % agreement with theory

• Ederth '2000 cylindrial geometry

- Chan, Aksyuk, Kleiman, Bishop & Capasso '2001 Actuation of micromechanical devices using the Casimir force
- Bressi, Carugno, Onofrio & Ruoso '2002 parallel plates
- Decca, Lopez, Fischbach & Krause '2003 dissimilar metals, 'Casimir-less' experiments

Proximity force approximation (Derjaguin approx)

Valid for d << R (typical d ~ 100 to 400 nm, R ~ 50 to 100 um)

Micromechanical torsional device

Tilting the top plate by applying DC bias to electrode

Experimental setup

Calibration by electrostatic force

Residual voltage

d

 $F = \varepsilon_o \pi R \, \frac{\left(V - V_o\right)^2}{d}$

R

Differences in work functions of metal films

Residual voltage dependence on distance

Finite conductivity corrections

Lifshitz `1956

in material body:fluctuating electromagnetic field⇔ Charge and current fluctuations

+ boundary conditions

$$F_{\text{Lifshitz}}(z) = \frac{\hbar}{2\pi c^2} R \int_0^\infty \int_1^\infty p \xi^2 \left\{ \ln \left[1 - \frac{(s-p)^2}{(s+p)^2} e^{-2pz\xi/c} \right] + \ln \left[1 - \frac{(s-p\varepsilon)^2}{(s+p\varepsilon)^2} e^{-2pz\xi/c} \right] \right\} dp d\xi$$
$$s = \sqrt{\varepsilon (i\xi) - 1 + p^2} \qquad \varepsilon (i\xi) = \frac{2}{\pi} \int_0^\infty \frac{x\varepsilon''(x)}{x^2 + \xi^2} dx + 1 \quad \text{Kramers-Kronig}$$

Need:
$$z, \varepsilon''(\omega)$$

tabulated in data books

Casimir force with roughness and finite conductivity corrections

Chan et al., Science 291, 1941 (2001).

Simple Harmonic Oscillations

Nonlinear behavior induced by the Casimir force

Anharmonic Oscillator: Equation of motion

$$I\ddot{\theta} + \lambda\dot{\theta} + k\theta = \tau\cos\omega t + bF\left(d + b\theta\right)$$

Taylor series:

$$F(d+b\theta) = F(d) + F'(d)(b\theta) + \frac{1}{2}F''(d)(b\theta)^{2} + \frac{1}{6}F''(d)(b\theta)^{3}$$

$$\ddot{\theta} + 2\gamma\dot{\theta} + \left[\omega_o^2 - \left(\frac{b^2}{I}\right)F'(d)\right]\theta = \left(\frac{\tau}{I}\right)\cos\omega t + \frac{bF(d)}{I} - \alpha\theta^2 - \beta\theta^3$$

Frequency shift:

$$\Delta \omega = -\frac{b^2}{2I\omega_o} F'(d)$$

Nonlinear terms:

h

piezo

A

$$\alpha = -b^{3}F''(d)/2I \ \beta = -b^{4}F'''(d)/6I$$

Nonlinear Casimir oscillator

$$I\ddot{\theta} + \lambda\dot{\theta} + k\theta = \tau\cos\omega t - \alpha\theta^2 - \beta\theta^3$$

Strongly nonlinear oscillator

bistability and hysteresis

Geometry dependence of the Casimir force: Nanoscale trench arrays

Chan et al., PRL 101, 030401 (2008).

Ho Bun Chan (U Florida) Yiliang Bao (U Florida) Jie Zou (U Florida)

Yiliang Bao

Jie Zou

Ray Cirelli (Bell Labs) Fred Klemens (Bell Labs) Bill Mansfield (Bell Labs) C.S. Pai (Bell Labs)

Repulsive Casimir force and micromechanics

If experimentally feasible, repulsive Casimir force can potentially reduce stiction.

1. Closed geometries: Boyer (1968), Maclay (2000),

cannot cut sphere or box in half

 Make one surface infinitely permeable (Hushwater 96)

- 3. Introduce liquid into the gap (current experiments by Capasso)
- 4. Possible use of meta material (Leonhardt and Philbin 2007) ε₁ < ε₂ < ε₃ need negative index over a wide spectral range introduce gain (Lifshitz formula no longer applies)
 It remains a major challenge to generate repulsive Casimir force with a vacuum gap.

Experimental attempts to demonstrate the non-trivial boundary dependence of the Casimir force

• Experiment: Roy & Mohideen, PRL 82, 4380 (1999).

A large sphere and a plate with periodic sinusoidal corrugation

a = 59.4nm, λ = 1.1 μ m, H/ λ \approx 0.1-0.8

Measured force exceeds pairwise additive interaction

Klimchitskaya *et al.* PRA 63, 014101 (2001): possibility of of lateral force

• Theory: Emig, Hanke, Golestanian & Kardar, PRL **87**, 260402 (2001): a path integral quantization of the electromagnetic field

Correction is strong with large H/ λ

Non-trivial boundary dependence of the Casimir force

Chan et al., PRL 101, 030401 (2008).

Pairwise additive approximation (PAA) If d>>z, for all λ , $F_{corrugated}(z) = \frac{1}{2} F_{flat}(z)$

If d>>z, for all λ ,

 $\overline{F_{corrugated}(z)} = \frac{1}{2} \overline{F_{flat}(z)}$

Casimir force for perfect metal

for $\lambda \ll z$,

 $\overline{F_{\text{corrugated}}}(z) = \overline{F_{\text{flat}}}(z)$

Buscher & Emig, PRA **69**, 062101 (2004).

Experiments measuring Casimir force:

Proximity force approximation Valid for d << R (typical d ~ 100 to 400 nm, R ~ 50 to 100 um)

•Lamoreaux '1997 Torsional Pendulum 5% agreement with theory

• Mohideen & Roy '1998 AFM, 1 % agreement with theory

• Ederth '2000 cylindrial geometry

 Chan, Aksyuk, Kleiman, Bishop & Capasso '2001 Actuation of micromechanical devices using the Casimir force

• Bressi, Carugno, Onofrio & Ruoso '2002 parallel plates

• Decca, Lopez, Fischbach & Krause '2003 dissimilar metals, 'Casimir-less' experiments

Sample fabrication and characterization 400nm 1um

Oxide etch Deep UV litho Etch DRIE mask mask removal Solid fraction p = 0.51 + 0.001histogram of pixel brightness in top view average from 10 pictures

Depth = 1.07 um

Experiment setup

Sample orientation eliminate lateral motion.

Immediately before pump down HF remove native oxide layer, hydrogen termination of the surface

Calibration by electrostatic force

Flat surface

$$F_{e}' = \varepsilon_0 \pi R \frac{(V - V_0)^2}{(z + z_0)^2}$$

 V_0 : residual voltage z_0 : closest approach distance

- Finite element analysis to solve 2D Poisson equation: N >10 000 triangles
- Proximity force approximation: $F_{sphere-contrugate} = 2 \pi R E_{flat-corrugate}$
- Check convergence: double N changes force by 0.1%

Casimir force measurements

Any deviation of measured force on corrugation from $pF_{c, flat}$

→ deviation from pairwise additivity (dependence of Casimir force on geometry)

Non-trivial boundary dependence of the Casimir force

Lambrecht & Marachevsky 2008: includes both finite conductivity and geometry effects.

Using reflection coefficients and argument principle

Possible reason for discrepancy:

uncertainties in the optical properties of gold and silicon

In progress: shallow trench arrays

Contribution of bottom surface not negligible Easier for comparison to theory (perturbative approaches)

Buscher & Emig, PRA 69, 062101 (2004).

Summary

- Micromechanical torsional oscillator for measuring the Casimir force.
- nonlinear Casimir micromechanical oscillator.
- Geometry dependence of the Casimir force:
- Experiment on strongly deformed surface: array of nanoscale trenches

Up to 30% deviation from pairwise additive approximation A factor of 2 smaller than theory on perfect metals

Collaborators

University of Florida	Be
Yiliang Bao	Fe
Jie Zou	Vl
University Paris-Sud	Ra
Thorsten Emig	
UT Brownsville	
Andreas Hanke	

ell Labs derico Capasso adimir Aksyuk ffi Kleiman. wid Bishop

Ray Cirelli Fred Klemens **Bill Mansfield** C.S. Pai

DE-FG02-05ER46247

DMR-0645448

