Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs$_2$CuCl$_4$

Radu Coldea
University of Oxford

Collaborators:

Neutron scattering
- D. Alan Tennant (St. Andrews Univ., UK)
- Alexei M. Tsvelik (Brookhaven, USA)
- K. Habicht, P. Smeibidl (HMI, Berlin)

Crystal growth
- Z. Tylczynski (Poland)

Magnetization
- Yoshi Tokiwa
 - Philipp Gegenwart
 - Frank Steglich
 - (Max Planck Institute CPfS, Dresden, Germany)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Outline
Explore 2D frustrated quantum magnet Cs₂CuCl₄ with magnetization & neutrons
1. Phase diagram
2. Measurement of Hamiltonian
3. Spin excitations
4. Summary

What are the effects of frustration and quantum fluctuations (S=1/2) in this 2D antiferromagnet?

Crystal structure and magnetism of Cs₂CuCl₄

Layers of S=1/2 Cu²⁺ ions coupled in a triangular geometry

J, J' antiferromagnetic

Low antiferromagnetic superexchange J ~ 4 K => saturation fields ~ 9 T

Large high-purity single crystals grow from solution
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs$_2$CuCl$_4$

Magnetic susceptibility

Local moment Curie-Weiss behaviour at high T

Low-field magnetization vs T

Magnetic order

Broad peak characteristic of short-range antiferromagnetic correlations

Phase diagram in applied field

Incommensurate magnetic Bragg peaks indicate spiral order

Non-collinear spiral promoted by frustration

Perpendicular field stabilizes cone

Radu Coldea, Oxford University (KITP Exotic Order Conference 6/11/04)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Cross-over phase diagram

Magnetization vs T at low field

LRO stabilized by interlayer couplings

Fully-polarized ground state (fluctuations suppressed)

Thermally induced spin flips in the saturated phase lead to exponential decay in M(T)

Magnon dispersion in the saturated phase gives Hamiltonian

- neutrons flip over one spin

\[H = \sum_{\langle ij \rangle} J_{ij} S_i^+ S_j^- - h \sum_i S_i^z \]

coherent propagation of spin-flip states (if Hamiltonian conservs \(S^z \))

\[|\varphi_q\rangle = \frac{1}{|N|} \sum_i e^{i \varphi} |i\rangle \]

Radu Coldea, Oxford University (KITP Exotic Order Conference 6/11/04)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Magnon dispersion at saturation

Neutron scattering observe

S=1 magnons

Fourier transform of couplings $J(q)$

$J = 0.374 \text{ meV}$

$J' \approx \frac{1}{3}$

2D Hamiltonian

$J''/J = 4.5(5)$ % interlayer exchange

$D_\alpha/J = 5.3(5)$ % DM anisotropy

Transition to cone order: Bose condensation of magnons

Bragg peaks appear where the gap closes

2nd order gap-closing transition

Radu Coldea, Oxford University (KITP Exotic Order Conference 6/11/04)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs$_2$CuCl$_4$

Observe non-mean-field scaling laws

Order parameter $<S^z>$:

$$<S^z> \sim (B_c - B)^\beta$$

$\beta = 0.5$

Exponent consistent with 2D BEC (3D XY universality)

Renormalization of ordering wavevector Q

Strong quantum renormalization $\varepsilon_0/\varepsilon_c = 0.56$

At high field could attribute this to magnon interactions in the condensed phase

Renormalization of incommensuration by fluctuations

Approximate solutions to the $S=1/2$ quantum problem give:

$$\frac{\varepsilon_0}{\varepsilon_c} = 0.43(1)$$

Series expansions, WeiHong et al (1999)

$= 0.70(3)$ Large-N, Chung et al (2001)

$= 0.56$ observed
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Phase diagram in applied field

- **Spin liquid**
- **3D LRO**
- **Critical**
- **Ferromagnetic**

Incommensurate low-energy dispersion in zero field

Low-energy dispersion shows incommensurate 2D modulations

- Magnetic Bragg peaks
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Incommensurate high-energy dispersion in zero field

Strong asymmetry and transverse dispersion due to frustration J'

Dispersion relations in zero field

Magnetic Bragg peaks

2D incommensurate modulations observed both at low and high energies

Semi-classical velocity for bare (J,J') couplings

⇒ quantum renormalization $R=1.65$

(quantum solution for $1D S=1/2$ chain gives $R=1.57$)

Radu Coldea, Oxford University (KITP Exotic Order Conference 6/11/04)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Excitation lineshapes and breakdown of the spin-wave description

Spin-wave theory for a spiral predicts 3 magnon modes $\Delta S^z = 0, +1, -1$

Even higher-order processes in LSWT cannot explain the dominant continuum scattering

Analysis of the dominant continuum scattering

Dominant continuum scattering at medium-high energies not described by 2-magnons

At very low energies, see a sharp $S=1$ magnon
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs$_2$CuCl$_4$

Analysis of the dominant continuum scattering

Continuum scattering at high energies described by a power-law form

\[S(k, \omega) = |k| \frac{\delta(\omega - \omega_0)}{\omega^2 - \omega_0^2} \]

At very low energies see a sharp $S=1$ magnon

Excitations in the spin-liquid phase above T_N

The sharp $S=1$ magnon disappears above T_N

Dispersion maintains incommensurate 2D modulations

Transverse dispersion

Radu Coldea, Oxford University (KITP Exotic Order Conference 6/11/04)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Continuum of scattering and S=1/2 spinons

Make analogy with 1D where spin-wave description breaks down

=> power-law correlations and spin-1/2 spinons

KCuF3 prototypical 1D system

- Interchain couplings small $J'/J \approx 5\%$
- unfrustrated, commensurate
- high energies dispersion essentially 1D

- Interchain couplings large $J'/J \approx 34\%$ (2D)
- frustrated
- incommensurate dispersion, shows strong 2D modulations at all energies

Physical picture of excitations

$S=1/2$ spinons at all energy scales

$S=1/2$ spinons at medium energies
$S=1$ magnon at low energies

$S=1/2$ Spinons + weak attractive interaction (mean field)

$S=1$ magnon only

Continuum of de-confined $S=1/2$ spinons

Bound state ($S=1$ magnon)
Neutron scattering from spinons in the anisotropic triangular quantum magnet Cs2CuCl4

Magnetization curve in Cs$_2$CuCl$_4$

- **Nonlinear shape due to fluctuations**
- **Saturation field 42% higher than 1D case (J'=0)**
- **Include 1st order corrections to 1/S spin-wave theory for 2D (J, J')**

Summary & conclusions

1. Cs$_2$CuCl$_4$ is spin-1/2 HAF on anisotropic triangular lattice (2D) : $J'/J \sim 1/3$

2. See excitations continua in neutron scattering, as characteristic of deconfined $S=1/2$ spinons

3. Dispersion relations show 2D incommensurate modulations

4. Intensities described by a 2-spinon power-law lineshape

5. Excitations velocity renormalized from classical ($R=1.65$)

6. Observe large incommensuration effects in field on the scale of band filling of $S=1/2$ spinon orbitals