What asteroseismology CAN DO FOR EXOPLANETS

KITP - SANTA BARBARA

Vincent Van Eylen

RUSSELL FELLOW - PRINCETON UNIVERSITY

Asteroseismology comes 'for free' in time series photometry and gives deep knowledge of a star and its planets.

Kepler-410, Van Eylen et al. 2014

Solar system planets show a wide diversity.

Solar system planets show a wide diversity.

Solar system planets show a wide diversity.

Many planets are unlike those in our solar system.

Many planets are unlike those in our solar system.

Many planets are unlike those in our solar system.

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere.
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere.

e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere.
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Photo-evaporation results in:
(1) a lack of planets around $2 R_{\oplus}$: a 'radius valley'

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere.
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Photo-evaporation results in:
(1) a lack of planets around $2 R_{\oplus}$: a 'radius valley'
(2) valley depends on planet composition and orbital period

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley: disappointing at first!

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley: disappointing at first!

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Early Kepler
25\% precision

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Spectroscopy \& Gaia
<10\% precision

Fulton et al. 2017
Berger et al. 2018
Fulton \& Petigura 2018

Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:
(1) there would be a lack of planets around $2 R_{\oplus}$
(2) this 'radius valley' is a function of orbital period and composition
e.g. Lopez \& Fortney 2013, Owen \& Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Setting out to observe this valley, early Kepler results look rather disappointing.

Setting out to observe this valley, early Kepler results look rather disappointing.

Precise stellar and planetary parameters bring the radius valley into view: spectroscopy + Gaia.

Adapted from Fulton et al. 2017

Precise stellar and planetary parameters bring the radius valley into view: asteroseismology!

Van Eylen et al. 2018b

- We find a very empty radius valley.

Van Eylen et al. 2018b

- We find a very empty radius valley.
- Using support vector machines, we measure its precise location \& slope: $\log _{10}(\mathbf{R})=-0.09_{-0.04}^{+0.02} \log _{10}(\mathbf{P})+0.37_{-0.02}^{+0.04}$.

Comparing the slope to photo-evaporation models reveals

 core composition (+ evaporation physics).

Comparing the slope to photo-evaporation models reveals

 core composition (+ evaporation physics).

- Slope consistent with photo-evaporation predictions
- Location matches terrestrial core composition (in situ formation?)
- Valley's emptiness suggests homogeneous core composition

Comparing the slope to photo-evaporation models reveals core composition (+ evaporation physics).

Van Eylen et al. 2018b

- Slope consistent with photo-evaporation predictions
- Location matches terrestrial core composition (in situ formation?)
- Valley's emptiness suggests homogeneous core composition
- Alternatives. Slope inconsistent with late gas poor formation, but perhaps core-powered mass-loss: see e.g. Gupta \& Schlichting 2019

Our solar system is flat and planet orbits are nearly circular.

What are the eccentricities of exoplanets?

Eccentricities from RV detections from exoplanets.org.

What are the eccentricities of exoplanets?

Eccentricities from RV detections from exoplanets.org.

What are the eccentricities of exoplanets?

Eccentricities from RV detections from exoplanets.org.

How to observe eccentricity?

- Using radial velocities

How to observe eccentricity?

- Using radial velocities - straightforward, but not for smallest planets

How to observe eccentricity?

- Using radial velocities - straightforward, but not for smallest planets
- Using transits - can detect small planets (e.g. Kepler), but no full orbit

How to observe eccentricity?

- Using radial velocities - straightforward, but not for smallest planets
- Using transits - can detect small planets (e.g. Kepler), but no full orbit can get eccentricity from transit duration, if we can calibrate it!

Calibration: transit durations are proportional to the mean stellar density, as well as the planetary orbit.

How to observe eccentricity?

- Using radial velocities - straightforward, but not for smallest planets
- Using transits - can detect small planets (e.g. Kepler), but no full orbit can get eccentricity from transit duration, if we can calibrate it!

Kepler-410, Van Eylen et al. 2014

Combining precise stellar mean densities from asteroseismology with careful transiting modeling, we can get orbital eccentricities.

The orbital eccentricity of small planets

Only $P>5$ days plotted

The orbital eccentricity of small planets

Only $P>5$ days plotted
Van Eylen \& Albrecht 2015
Multi-planet systems are near-circular, like the solar system.

The orbital eccentricity of small planets

Only $P>5$ days plotted
Van Eylen et al. 2019
Single-transiting-planet systems have moderate eccentricities.

The orbital eccentricity of small planets

Van Eylen et al. 2019
Single-transiting-planet systems have moderate eccentricities, due to e.g.

- Self-excitation: gravitational scattering increases inclination/eccentricity e.g. Moriarty \& Ballard 2016, Dawson, Lee \& Chiang 2016
- Outer planet perturbations: long period Jupiters excite eccentricity e.g. Haghighipour 2013, Huang et al. 2016

The orbital eccentricity of small planets

Van Eylen et al. 2019
Single-transiting-planet systems have moderate eccentricities, due to e.g.

- Self-excitation: gravitational scattering increases inclination/eccentricity e.g. Moriarty \& Ballard 2016, Dawson, Lee \& Chiang 2016
- Outer planet perturbations: long period Jupiters excite eccentricity e.g. Haghighipour 2013, Huang et al. 2016

The orbital eccentricity of small planets

Single-transiting-planet systems have moderate eccentricities, due to e.g.

- Self-excitation: gravitational scattering increases inclination/eccentricity e.g. Moriarty \& Ballard 2016, Dawson, Lee \& Chiang 2016
- Outer planet perturbations: long period Jupiters excite eccentricity e.g. Haghighipour 2013, Huang et al. 2016

Our solar system is flat and planet orbits are nearly circular.

Our solar system is flat and planet orbits are nearly circular.

Giant planets can be highly eccentric, systems with small planets are often like the solar system, but not always.

Our solar system is flat and planet orbits are nearly circular.

Giant planets can be highly eccentric, systems with small planets are often like the solar system, but not always.

What about the alignment of the stellar rotation?

How can we measure the obliquity?

How can we measure the obliquity?

Rossiter-McLaughlin effect

Large planets

How can we measure the obliquity?

Rossiter-McLaughlin effect

Large planets

Asteroseismology

Accurate mass, radius, age, ...

... and stellar inclination! Independent of planet

What do obliquities tell us?

Albrecht et al. 2013, adapted by Huber 2017, including data from Sanchis-Ojeda et al. 2012, Hirano et al. 2012 Chaplin et al. 2013, Huber et al. 2013, Van Eylen et al. 2014, Benomar et al. 2014
See also ensemble studies: e.g. Morton \& Winn 2014, Mazeh et al. 2015, Campante et al. 2016, Winn et al. 2017
(1) Giant planets, in grey: often misaligned
(2) Systems with (multiple) small planets, in color: more aligned?

Green points from asteroseismology! Done with Kepler, waiting for TESS/PLATO...
.. but see Kepler-408; Kamiaka et al. 2019

Our solar system is flat and planet orbits are nearly circular.

Giant planets can be highly eccentric, systems with small planets are often like the solar system, but not always.

Our solar system is flat and planet orbits are nearly circular.

Giant planets can be highly eccentric, systems with small planets are often like the solar system, but not always.

Giant planets often misaligned, small planets maybe - TESS/PLATO?.

Do planets orbit all kinds of stars?

(1) Formation: around which stars do planets form?
e.g. Burkert \& Ida 2007, Kretke et al. 2009, Currie 2009
(2) Evolution: as stars evolve, what happens to planetary systems?
e.g. Rasio et al. 1996, Villaver \& Livio 2009, Schlaufman \& Winn 2013

Short-period planets around evolved stars: search ongoing

K2-99 (Smith et al. 2017), Kepler-432 (Ortiz et al. 2015, Ciceri et al. 2015, Quinn et al. 2015),
Kepler-91 (Lillo-Box et al. 2014a, Sliski \& Kipping 2014, Lillo-Box et al. 2014b, Barclay et al. 2015),
Kepler-56 (Huber et al. 2013), K2-97 (Grunblatt et al. 2016, 2017), K2-39 (Van Eylen et al. 2016c)
KOI-4 (Chontos et al. 2018).
More evolved? Occurrence constraints on planets orbiting white dwarfs: van Sluijs \& Van Eylen 2018
Asteroseismic parameters of evolved stars e.g. Hjørringgaard+2017, Stello+2017, North +2017 , Campante +2017

We've answered many questions, but as many remain open. Luckily, asteroseismology \& exoplanets have a bright future!

(1) Accurate stellar radius and mass \rightarrow planet radius and mass e.g. radius gap: how to form close-in planets, which ones have atmospheres
(2) Mean stellar density \rightarrow orbital eccentricity e.g. formation history, single-tranets have higher eccentricity
(3) Rotational splitting \rightarrow obliquities
e.g. obliquity of systems with multiple / small planets
(4) Evolutionary stage, age \rightarrow...?
e.g. planets around evolved stars, ...?

