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Asteroseismology comes ‘for free’ in time series photometry
and gives deep knowledge of a star and its planets.

Kepler-410, Van Eylen et al. 2014



Solar system planets show a wide diversity.
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Many planets are unlike those in our solar system.
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Five years ago, photo-evaporation models predicted that
some close-in planets would lose their entire atmosphere.

e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014
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Photo-evaporation results in:

1 a lack of planets around 2 R⊕: a ‘radius valley’
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Photo-evaporation results in:

1 a lack of planets around 2 R⊕: a ‘radius valley’

2 valley depends on planet composition and orbital period



Five years ago, photo-evaporation models predicted that some
close-in planets would lose their entire atmosphere, and:

1 there would be a lack of planets around 2 R⊕

2 this ‘radius valley’ is a function of orbital period and composition
e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley: disappointing at first!
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Observing this valley and matching it to models requires
highly precise stellar (and planet transit!) parameters.
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25% precision

e.g. Huber et al. 2014



Five years ago, photo-evaporation models predicted that some
close-in planets would lose their entire atmosphere, and:

1 there would be a lack of planets around 2 R⊕

2 this ‘radius valley’ is a function of orbital period and composition
e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires
highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

e.g. Huber et al. 2014



Five years ago, photo-evaporation models predicted that some
close-in planets would lose their entire atmosphere, and:

1 there would be a lack of planets around 2 R⊕

2 this ‘radius valley’ is a function of orbital period and composition
e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires
highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

e.g. Huber et al. 2014



Five years ago, photo-evaporation models predicted that some
close-in planets would lose their entire atmosphere, and:

1 there would be a lack of planets around 2 R⊕

2 this ‘radius valley’ is a function of orbital period and composition
e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires
highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

Spectroscopy & Gaia
<10% precision

e.g. Huber et al. 2014 Fulton et al. 2017
Berger et al. 2018

Fulton & Petigura 2018



Five years ago, photo-evaporation models predicted that some
close-in planets would lose their entire atmosphere, and:

1 there would be a lack of planets around 2 R⊕

2 this ‘radius valley’ is a function of orbital period and composition
e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires
highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

Spectroscopy & Gaia
<10% precision

Asteroseismology
2% precision

e.g. Huber et al. 2014 Fulton et al. 2017
Berger et al. 2018

Fulton & Petigura 2018

Silva Aguirre et al. 2015
Lundkvist et al. 2016

Van Eylen et al. 2018, 2019



Setting out to observe this valley, early Kepler results look
rather disappointing.
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Precise stellar and planetary parameters bring the radius
valley into view: spectroscopy + Gaia.
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Adapted from Fulton et al. 2017

See also Fulton & Petigura 2018, Berger et al. 2018



Precise stellar and planetary parameters bring the radius
valley into view: asteroseismology!
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We find a very empty radius valley.
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We find a very empty radius valley.

Using support vector machines, we measure its precise
location & slope: log10(R) = −0.09+0.02

−0.04 log10(P) + 0.37+0.04
−0.02.



Comparing the slope to photo-evaporation models reveals
core composition (+ evaporation physics).
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Location matches terrestrial core composition (in situ formation?)

Valley’s emptiness suggests homogeneous core composition



Comparing the slope to photo-evaporation models reveals
core composition (+ evaporation physics).
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Van Eylen et al. 2018b

Slope consistent with photo-evaporation predictions

Location matches terrestrial core composition (in situ formation?)

Valley’s emptiness suggests homogeneous core composition

Alternatives. Slope inconsistent with late gas poor formation, but perhaps
core-powered mass-loss: see e.g. Gupta & Schlichting 2019



Our solar system is flat and planet orbits are nearly circular.



What are the eccentricities of exoplanets?
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How to observe eccentricity?
Using radial velocities
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How to observe eccentricity?
Using radial velocities – straightforward, but not for smallest planets

Using transits – can detect small planets (e.g. Kepler), but no full orbit
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How to observe eccentricity?
Using radial velocities – straightforward, but not for smallest planets

Using transits – can detect small planets (e.g. Kepler), but no full orbit
can get eccentricity from transit duration, if we can calibrate it!

Calibration: transit durations are proportional to the mean stellar density, as
well as the planetary orbit.



How to observe eccentricity?
Using radial velocities – straightforward, but not for smallest planets

Using transits – can detect small planets (e.g. Kepler), but no full orbit
can get eccentricity from transit duration, if we can calibrate it!

Kepler-410, Van Eylen et al. 2014

Combining precise stellar mean densities from asteroseismology with careful
transiting modeling, we can get orbital eccentricities.



The orbital eccentricity of small planets
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The orbital eccentricity of small planets
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Multi-planet systems are near-circular, like the solar system.



The orbital eccentricity of small planets
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Only P > 5 days plotted

Van Eylen et al. 2019

Single-transiting-planet systems have moderate eccentricities.

See also Xie et al. 2016 (LAMOST), Mills et al. 2019 (CKS)



The orbital eccentricity of small planets
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Single-transiting-planet systems have moderate eccentricities, due to e.g.

Self-excitation: gravitational scattering increases inclination/eccentricity
e.g. Moriarty & Ballard 2016, Dawson, Lee & Chiang 2016

Outer planet perturbations: long period Jupiters excite eccentricity
e.g. Haghighipour 2013, Huang et al. 2016



The orbital eccentricity of small planets
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Giant planets can be highly eccentric, systems with small planets are
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What about the alignment of the stellar rotation?
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Accurate mass, radius, age, ...

... and stellar inclination!
Independent of planet
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What do obliquities tell us?

Albrecht et al. 2013, adapted by Huber 2017, including data from Sanchis-Ojeda et al. 2012, Hirano et al. 2012

Chaplin et al. 2013, Huber et al. 2013, Van Eylen et al. 2014, Benomar et al. 2014

See also ensemble studies: e.g. Morton & Winn 2014, Mazeh et al. 2015, Campante et al. 2016, Winn et al. 2017

1 Giant planets, in grey: often misaligned

2 Systems with (multiple) small planets, in color: more aligned?
Green points from asteroseismology! Done with Kepler, waiting for TESS/PLATO...

.. but see Kepler-408; Kamiaka et al. 2019
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Do planets orbit all kinds of stars?

1 Formation: around which stars do planets form?
e.g. Burkert & Ida 2007, Kretke et al. 2009, Currie 2009

2 Evolution: as stars evolve, what happens to planetary systems?
e.g. Rasio et al. 1996, Villaver & Livio 2009, Schlaufman & Winn 2013



Short-period planets around evolved stars: search ongoing
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K2-99 (Smith et al. 2017), Kepler-432 (Ortiz et al. 2015, Ciceri et al. 2015, Quinn et al. 2015),

Kepler-91 (Lillo-Box et al. 2014a, Sliski & Kipping 2014, Lillo-Box et al. 2014b, Barclay et al. 2015),

Kepler-56 (Huber et al. 2013), K2-97 (Grunblatt et al. 2016, 2017), K2-39 (Van Eylen et al. 2016c)

KOI-4 (Chontos et al. 2018).

More evolved? Occurrence constraints on planets orbiting white dwarfs: van Sluijs & Van Eylen 2018

Asteroseismic parameters of evolved stars e.g. Hjørringgaard+ 2017, Stello+ 2017, North+ 2017, Campante+ 2017



We’ve answered many questions, but as many remain open.
Luckily, asteroseismology & exoplanets have a bright future!

Kepler & K2 PLATOTESS
2009-2018 2018-... ~2026

1 Accurate stellar radius and mass → planet radius and mass
e.g. radius gap: how to form close-in planets, which ones have atmospheres

2 Mean stellar density → orbital eccentricity
e.g. formation history, single-tranets have higher eccentricity

3 Rotational splitting → obliquities
e.g. obliquity of systems with multiple / small planets

4 Evolutionary stage, age → ...?
e.g. planets around evolved stars, ...?


