Rotation and activity in M dwarfs

Elisabeth R. Newton

Dartmouth College

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

A factor of 10 in mass!

Stellar spin-down

c.f. Irwin & Bouvier (2009)

Background

Measuring rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

[Ask me about planets]

Rotation periods

Starspots result from the magnetic field and we use them to measure rotation.

The MEarth Project

Thanks to collaborators: D. Charbonneau, J. Irwin, Z.K. Berta-Thompson, J. Dittmann, J. Winters

Long time base-line: sensitivity to long periods

Rotation periods of field stars

Rotation periods of field stars

Rotation periods of field stars

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

The rotation-activity relation

The relation is the same for partially and fully convective M dwarfs

More on rotation and activity in M dwarfs: See talk by Nick Wright on Friday

Scatter in the H α -rotation relation

More variable stars are more active

ERN et al. (2017)

More to come on this using TESS + ground-based spectra

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

The rotation period gap

There is a gap in the rotation (and activity) distributions

Early — Mid — Late

Placing field stars in context

Placing field stars in context

Pleiades, 125 Myr; Rebull et al. (2016)

The M dwarf rotation gap is the same as the cluster gap.

More on M dwarf angular momentum evolution: See talk by Cecilia Garaffo later today

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

The spin-down timescale

ERN et al. (2016a)

Gaia only helps some because kinematics requires radial velocities: See poster by Jen Winters

The spin-down timescale

Rapid spin-down occurs around 2 Gyr (with large errors)

Galactic dynamics are great: See talk by Ruth Angus

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

Stellar rotation & habitable planets

Background

Measuring stellar rotation

The rotation-activity relationship

The gap in the rotation period distribution

The spin-down timescale

Impact on planet detection

Stellar mass matters

Ground-based data is great

Shape and scatter of rotation-activity relation

The period gap is akin to what's seen in clusters

...but it takes M dwafs a few Gyr to spin down

HZ planet are hard for early-to-mid M dwarfs

The period-amplitude relation

