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Science Motivation



Why High Contrast Imaging?
• Exoplanet detection

– Direct methods to explore beyond 5 AU
– Spectroscopy of exoplanetary light

• Thermal history & composition
• Circumstellar disks

– Proto-planetary & debris disks
– Relationship between planets & disk structures

• Fundamental stellar astrophysics
– Large mass range main sequence binaries

• Brown dwarfs & white dwarfs
• Mass transfer & loss

– Cataclysmic variables, symbiotic stars & supergiants
• Solar system:

– Jovian & Saturnian moons
– Binary asteroids



Exoplanet Imaging

• Only about 5-10% of stars searched have planets
– Why isn’t it 50%?

• A diversity of exoplanets…
– ≤ 20% of the Solar System’s orbital phase space explored
– Is the Solar System typical?

• Do A & early F stars have planets? M dwarfs?
– Doppler is not ideal for early type stars
– Photometric methods are not ideal for active stars

• How do planets form?
– Core accretion vs. gravitational collapse

• New questions
– What is the origin of dynamical diversity?





 Druckmuller http://apod.nasa.gov



Reflected Starlight?

• Median contrast &
angular separation
for cataloged
Doppler planets
– 2 × 10-8

– 30 mas cf. 3λ/D  =
130 mas @ H

• 1/r2 dimming of
reflected light
renders visible
light coronagraphs
insensitive to
planets in Neptune
orbits

Median

Known Doppler Planets

From the groundFrom the ground——target self-target self-
luminous planets betweenluminous planets between

44––40 AU40 AU



Detection of Cooling Planets

• Contrast required to
detect an exo-Jupiter
in a 5 AU orbit in the
visible is 2 × 10-9

• Near-IR contrast is 2-
3 orders of magnitude
more favorable
– Radiation escapes in

gaps in the CH4 and
H2O opacity at Y, J, H,
&  K
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Exoplanet Atmospheres
• Exoplanets occupy a

unique location in
(log g, Teff ) phase space

– Over 4.5 Gyr a Jovian
mass exoplanet traverses
the locus of H2O & NH3
cloud condensation

• “Last frontier” of classical
stellar atmospheres
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Solar System Imaging

• Fast alternative
– Improved statistics

• 4–40 AU vs. 0.4–4 AU

• Search for exoplanets > 4 AU
– Uniqueness of solar system?
– Sample beyond the snow line &

explore outer disks
• T Tauri disk radii are 50-80 AU

– Do planets form by gravitational
instability  (30–100 AU)?

– Traces of planetary migration
• Relation to debris disks
• Resolve M sin i ambiguity

M
ayer et al. 2002 
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Are Circumstellar Disks Unstable?
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Thermal Evolution Reveals History

• Luminosity including the
effects of core accretion
– Planet is formed by 2 Myr
– The gas accretion

luminosity spike lasts
about 0.04 Myr
• The spike may be broader

& dimmer due to slow
accretion across the gap
formed by the proto-
planet

• The dashed line is a “hot
start” cooling track

M
arley et al. (2007)

2 MJ planet

1) Accretion of solids
2) Hydrodynamic (gas) accretion
3) Runaway gas accretion

Core accretion
(Marley/Fortney)

Hot start
(Burrows)



Where are the planets?

dN
da

∝ a−β 0 < a < a1

dN
dr

∝ 4πr2 0 < r < r1
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• Assuming a
semimajor axis
distribution, dN/da
(from Doppler) & a
Euclidean space
distribution dN/dr —



A Simple Example
• AO

– r0 = 100 cm
– 2.5 kHz update rate
– 13 cm sub-apertures

• R = 7 mag. limit

• Coronagraph
– Ideal apodization

• Science camera
– Broad band H
– No speckle suppression

• Target sample
– R < 7 mag.
– 1703 field stars (< 50 pc)

Doppler

GPI

• Results
– 110 exoplanets (~ 6% detection rate)
– Semimajor axis distribution is

complementary to Doppler exoplanets

G
raham

 et al. arXiv:0704.1454
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A Simple Example

Jupiter
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Diffraction & Wavefront Errors
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Diffraction

• The PSF drops off slowly with angle for a hard edged
pupil
– Airy function declines as θ-3 at large θ

• Basic consequence of Fourier optics
– The smoother the pupil function, the more compact the PSF

• If  a function & its first n-1 derivatives are continuous,
its Fourier transform decreases at least as rapidly as
1/k(n +1) at large k
– The top hat function II(x) is discontinuous (n = 0),

• FT[II(x)] = sinc(k) → 1/k as k >> 1

– The triangle Λ(x) = II(x) * II(x) is continuous, but its first
derivative is discontinuous (n=1)
• FT[Λ(x)]=sinc2(k) → 1/k2 as k >>1
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Guyon 2009 “Exoplanets & Disks”
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Wavefront errors

• A wavefront error,
spatial frequency k,
diffracts light
according to the
condition for
constructive
interference θ = kλ/2π



S. Hinkley
Vega/AEOS
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Dynamic & Static Phase Errors

  

p = FT ( AΦ)
2

where Φ = Φ0 +Φ(t)

p = FT ( AΦ(t))
2

t
+ FT ( AΦ0 )

2

 Uncorrelated static
&  dynamic phase
errors

Averages to a smooth “halo”
over the decorrelation time

“Static”
speckles

PSF = dynamic atmosphere PSF (smooth) + static PSF (speckles)
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Atmospheric speckles smooth out

• Atmospheric speckle lifetime ~0.5 Dtel/vwind
• AO control does not modify this (even predictive…)
• WFS measurement speckles and pinned speckles have shorter

lives but atmosphere speckles provide floor
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Static errors do not average out

Static error only Static+random error

+10 iterations
random

+100 iterations
random
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Mitigating Static Errors

• Differential imaging
– Angular differential imaging (ADI)

• Marois et al. 2006 (ADI)
• Lafreniere et al. 2007 (LOCI)

– Spectral differential imaging (SDI)
• Sparks & Ford 2002

– Polarization differential imaging (PDI)
• Perrin et al. 2004

• Precision wavefront measurement & control



Image 1

Subtraction

Angular Differential Imaging
Image 2 (+ 5 minutes)
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~10× better PSF subtraction

HR 8799 HST/NICMOS

Raw HST HST roll
subtraction

LOCI with
PSF library

Lafreniere et al. 2009



S. Hinkley
P-200/1640



High Contrast Campaigns
• Gemini-South/NICI (M. Liu)

– 85 element AO curvature-based system
– Dual channel imager/Lyot coronagraph/ADI
– 50 nights of observing time/300 stars
– ΔH = 15 mag. at 1”

• Palomar/Project 1640 (Oppenheimer/Hinkley/Dekaney)
– PALAO 241 actuator SH system
– J+H integral field spectrograph/APLC

• Upgrade to PALM-3000
– 100 night campaign

• Subaru/HiCIAO/SEEDS (M. Tamura)
– AO188: Curvature-sensing AO with 188 elements

• SCExAO1024 upgrade
– Lyot coronagraph, PDI, SDI
– 120 night/5-year strategic survey



High Contrast Campaigns
• VLT/SPHERE (J.-L. Beuzit)

– High-order AO/APLC/4QPM
•  41 × 41 actuator DM

– IFS/IRDIS/ZIMPOL instruments
– ΔH ≈ 15.5-17.5 mag. at 0.15-1”
– First light 2nd half 2011
– ~ 200 night campaign

• Gemini South (B. Macintosh)
– High-order AO/APLC

•  64 × 64 actuator MEMS DM
– Integral field spectrometer
– Precision interferometric wavefront control
– ΔH ≈ 14.5-18 mag. at 0.2-1”
– First light March 2011
– Campaign TBD



Michael Liu (IfA/UH)

NICI Campaign: Status

• Dec 2008 – Apr 2009:
monthly science runs
– 132 stars observed

• Dec 2009 – May 2010:
Year-2 observing
– Observe new targets
– Obtain 2nd epoch confirmation

(or not) of candidate
companions.

– Follow-up imaging + spectra of
confirmed exoplanets.



Subaru & HiCIAO
• PI: Motohide Tamura (NAOJ)

– Co-PIs: Tomonori Usuda, Hideki Takami (NAOJ)
– 94 scientists/24 institutes (including Princeton, UH, MPIA)

• AO, Coronagraph, Science camera: HiCIAO
– Curvature-sensing AO with 188 elements (SCExAO1024

upgrade)
– 20" FoV, Lyot coronagraph, PDI, SDI available.

• Commissioned 2009 (including Princeton/MPIA for
angular differential imaging)

• 120 night/5-year strategic survey "SEEDS" for planets
and disks now launched

• Direct imaging and census of giant planets around solar-
type and massive stars in the outer regions (a few - 40
AU)

• Exploring protoplanetary disks and debris disks for origin
of their diversity and evolution at the same radial regions

• Links between planets and protoplanetary disks



VLT/SPHEREVLT/SPHERE
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AO Timelag

Guide star photon limit

Inner working
distance ~2-6
λ/D

Fitting error

Outer working distance
~N λ/D

PSF components 



Requirements for High-Contrast

• Advanced AO for good control of dynamic
aberrations + external static aberrations

• Coronagraph to control diffraction to target
contrast level

• Non-common-path error control
• Differential imaging

– ADI: Cassegrain focus on Al/Az telescope
– SDI: Integral field spectrograph

• Amplitude errors must be small (or controlled…)
• Stability



Example: Gemini Planet Imager
• 1800-actuator AO system
• Strehl ratio ~ 0.9 at H
• Superpolished optics & precision

calibration
• APLC coronagraph
• Integral field spectrograph + polarimeter

LLNL: Project lead + AO
AMNH:Coronagraph masks
HIA: Optomechanical + software
JPL: Interferometer WFS
UCB: Project scientist
UCLA: IR spectrograph
UdM: Data pipeline
UCSC: Final integration & test
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Fast, high-order anti-aliased AO

MEMS deformable
mirror

Woofer DM

Calibration/
Alignment

Unit

Spatially Filtered WFS 0.7-0.9 µm

GPI Window

Focal stop
spatial filter
λ/d=0.9”

Commercial computer
Fourier (predictive)

control
18 cm56 cmSubaperture

I < 9 mag.
 (V<11 aux.)

R < 13 mag.Guide star
mag.

>0.90.4Strehl @
1.65 µm

Spatially-
filtered SH
700-900 nm

Shack-
Hartmann
400 – 1000 nm

Wavefront
sensor

2000 Hz670 HzControl rate

4096
actuators
(1809 active)

349 actuators
(240 active)

Deformable
mirror

GPI
(2010)

Keck AO
(1999)



Interferometer Measures Science Wavefront
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APLC Optimized for Obscured Pupil

Lyot Mask Apodizer
Classical Lyot
coronagraph

PSF

Apodized pupil
Lyot coronagraph

PSF

Hard-Edged
Mask

• H-band optimized
– Additional mask for Z, J, & K

• Achromatic
– Contrast < 10-7 for 1.5-1.8µm

• Inner working angle 0.2 arc sec



Integral field spectrograph

Detector

Lenslet
grid in
focal
plane

Collimator
Optics

Camera
Optics

Microimages in a
pupil plane

Rotating Cold
Pupil Stop

Filters

R.I. Telephoto
Camera

Lenslets

Spectrograph

Collimated light
from Coronagraph

Prism

Window

Low spectral resolution (R ~ 50)

High spatial resolution (0.014 arcsec)

Wide field of view (3 x 3 arcsec)

Minimal scattered light
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Chromaticity & scintillation
• Integral field spectrograph

minimizes differential
chromatic errors

• Super polished optics
minimize internal beam-walk
and Fresnel effects (4 nm
RMS, 1 nm RMS mid
frequency)

• Optics maintained to CL =
300

• Transmissive optics
minimized

• Atmospheric dispersion
corrected early in the system



GPI Hardware


