Water delivery and terrestrial planet formation

Sean Raymond
Observatoire de Bordeaux
rayray.sean@gmail.com

Who cares about water?

Dry planets suck!

Who cares about water?

Universal symbol for life

Outline

Origin of Earth's water

- Terrestrial planet formation and water delivery in extra-solar planetary systems
 - Giant planet migration
 - Unstable giant planets

Origin of Earth's water

The Solar Nebula

Available solids determined by disk temperature distribution and condensation temperatures

Where was the snow line in the Solar Nebula?

- 5 AU to explain Jupiter?
- 2.7 AU to explain S vs C type asteroids?
- ~1 AU to follow models? (Sasselov & Lecar 2000; Lecar et al 2006; Ciesla & Cuzzi 2006; Kennedy & Kenyon 2008; Podolak 2009, ...)

Probably beyond Mars, but moving inward in time as disk cooled

Dodson-Robinson et al 2009

Potential sources of Earth's water

1. Local

- adsorption onto grains (Drake et al; Muralidharan et al 2008)
- oxidation of H envelope (Ikoma & Genda 2007)
- 2. Primitive asteroids (Morbidelli, Chambers, Lunine et al 2000; Chambers & Cassen 2002; Raymond et al 2007)
- 3. Comets (Delsemme 1992; Owen & Bar-Nun 1995)

Asteroidal source is currently most plausible

(with plenty of uncertainties)

Type 1 migration

- Important for ~Earth-sized planets that form quickly (Goldreich & Tremaine 1980; Ward 1986; Tanaka et al 2002)
- Another type of "water delivery" (Kuchner 2003)
 - Can lead to close-in waterrich planets (Terquem & Papaloizou 2007; Ogihara & Ida 2009)
- Testable with transit observations (papers by Selsis, Sotin, Seager, Valencia, Fortney, ...)
 - e.g., Corot-7b vs GJ 1214b

Credit: Phil Armitage

Water delivery

 Stochastic variations during latestage accretion

(e.g., Quintana & Lissauer 2007, Chambers 2001)

Water delivery

- Water delivery increases systematically for
 - Circular giant
 planet orbits
 (Chambers & Cassen 2002)
 - Massive disks

 (Raymond, Scalo &
 Meadows 2007)

Formation of rocky planets in extra-solar (giant planet) systems

Extra-solar (giant) planets

Two key processes have shaped the exoplanet distribution:

- 1. Orbital (type 2) migration: hot Jupiters, hot Neptunes
- 2. Planet-planet scattering: large orbital eccentricities

exoplanets.org

1. Giant Planet Migration

Close-in giant planets are thought to have migrated to their current locations because of interactions with the protoplanetary disk. How does this affect terrestrial planet formation?

Jupiter

Raymond, Mandell & Sigurdsson 2006

2. Planet-planet scattering

Dynamical instabilities leading to scattering can reproduce the observed exoplanet eccentricity distribution with virtually zero assumptions

(Chatterjee et al 2008; Ford & Rasio 2008; Adams & Laughlin 2003; Juric & Tremaine 2008; Marzari & Weidenschilling 2002)

Poster by Malmberg, talks by Armitage, Thommes

Raymond, Armitage, & Gorelick 2009

Raymond, Armitage et al 2010

Climate model with oscillating eccentricity

Spiegel et al 2010

- Run simulations with:
 - Terrestrial embryos+planetesimals
 - 3 giant planets
 - Outer disk of planetesimals

Match the giant planet eccentricity distribution

Surviving terrestrial planets have lower mean ecc than giants

- Match the giant planet eccentricity distribution
- Look at resulting terrestrial planet properties

Many systems have destroyed their terrestrial planets

- Match the giant planet eccentricity distribution
- Look at resulting terrestrial planet properties

Large oscillations in e and i are common: important for the climate (Spiegel et al 2010)

- Match the giant planet eccentricity distribution
- Look at resulting terrestrial planet properties

Low eccentricity giant planets correlate with well-developed terrestrial planet systems (e.g., Levison & Agnor 2003)

- Match the giant planet eccentricity distribution
- Look at resulting terrestrial planet properties
- Link to observable dust production from planetesimal collisions

High-eccentricity giant planets destroy planetesimals and observable dust

- Match the giant planet eccentricity distribution
- Look at resulting terrestrial planet properties
- Link to observable dust production from planetesimal collisions

Strong correlation between cold dust and large terrestrial planets

Speculation

- Old systems with lots of cold dust are good candidates for terrestrial planets
- 15-20% of old stars have bright cold dust (Trilling et al 2008; Carpenter et al 2009) -- a lower limit for eta_Earth?

Kalas et al 2008

Collaborators

(my good email is rayray.sean@gmail.com)

- Avi Mandell (NASA Goddard)
- David Spiegel (Princeton)
- Tom Quinn (Washington)
- Jonathan Lunine (Arizona)
- John Scalo (Texas)
- Vikki Meadows (Washington)
- Mark Booth (Cambridge)
- Mark Wyatt (Cambridge)

- Phil Armitage (Colorado)
- Alessandro Morbidelli (Nice)
- David O'Brien (PSI)
- Eric Gaidos (Hawaii)
- Nate Kaib (Washington)
- Steinn Sigurdsson (Penn St.)
- Amaya Moro-Martin (Madrid)
- John Armstrong (Weber St)
- Franck Selsis (Bordeaux)

Thanks to NASA and the CNRS for funding!

