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Overview

Time-dependent density functional theory

- Current status and need for improvements
- Nonlocality in space and time.

Many-body approach to TDDFT

- Conserving memory functionals: how to make them!?
- Functionals derived from the Luttinger-Ward action

Conclusions and outlook

Monday, November 16, 2009



Time-dependent Kohn-Sham equations

M input known external potential

(——V2 v(1) +or(1) + vee(1))di(1) = i0;¢i(1)

=) _file(V)
1=1

\

output density n[v]

All the memory and initial state dependence is contained in
the xc-potential
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The xc-kernel

Many TDDFT calculations are carried our in the linear response
regime.

Vee(l) = v5(1) —v(1) — v (1)

5?)5(1) 5@(1) 5(t1 — tz)
on(2) on(2) |r; —ro]

f:L’C(lv 2) —

We can then define the response functions

n on(1
X(1,2) — g?}gis X8(172) — 5,08((2))
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We obtain the well-known linear response equation

x(1,2) = xs(1,2) +/d3d4><s(1,3)[@U(374) + fac(3,4)]x (4, 2)

_ A

R Poles at Kohn-Sham eigenvalue differences
(singly excited determinants)

Poles at the true excitation energies

The xc-kernel must have frequency
= dependence to generate extra poles:

The memory in the xc-potential contains the
physics of double and higher excitations,
excitons....

Monday, November 16, 2009



In the adiabatic local density approximation (ALDA) we have

oA EPArt) = S (n(r))

fFALDA(pt vty =

rcC

The adiabatic local density approximation is both local in space
and in time.

One of the first functionals that went beyond the ALDA was the
so-called Gross-Kohn kernel which was local in space and
nonlocal in time.

However, this functional violated basic conservation laws.
Why is that?
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Spatial vs. temporal nonlocality

The zero-force theorem of TDDFT tells that
0 = / drn(rt)Vug.|n|(rt)

i.e. the xc-potential (being ‘internal’) does not exert a force on the system.

This relation is satisfied for the ALDA but will not in general
be satisfied for approximate potentials:

For instance, the so-called KLI| approximation for the exchange
potential violates it, as does the Gross-Kohn approximation.
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Example, TDKLI for a sodium cluster ( Nas)

305 |

"EXX-TDKLI ——
TDLDA ...............
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M.Mundt, S.Kummel, RvL, P-G.Reinhard, Phys.Rev.A75, 050501 (R) (2007)
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Differentiation of the zero-force constraint with respect to the
density leads to

/dr’ fre(r, 2’3 0)V'n(r") = Vug.(r)

Suppose in a weakly inhomogeneous system the xc-kernel has a
finite range, then (Giovanni Vignale)

Vn(r)/dr’ fre(r,v’;w) = Vug(r)
[ fuolrx'0) = frclle = 0,

Contradiction: Nonlocality in time incompatible with locality
in space. Memory functionals are nonlocal in space and time
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X
X0

A density functional that only depends on the density or its
gradients can not see the motion of the entire slab

The density functional needs to have a long range to see
the density change at the edges

(picture from Carsten Ullrich)
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New functionals beyond ALDA: the many-body approach

It must be possible to derive the xc-potential from many-body
methods

Why is this interesting or useful for TDDFT ?

|) Gives insight in how e-e interactions affect the properties
of time-dependent xc-functionals (nonlocality, memory....)

"MBPT is easy while TDDFT is simple™ (M.Gatti)

2) Leads to explicit constructions of functionals
(with nice properties as e.g. conserving approximations)

We need a many-body approach for time-dependent systems
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Keldysh theory in 2 slides

The time-dependent Hamiltonian

]:]( ) B }AL( ) n W = two-body interactions

Z h ot time-dependent
¢ / external potential
h(r,t) = ——V2 +v(r,t) — u

Expectation values : Before switch-on of the field

0)=m{po}l -
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The time contour L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965)

U‘“r —i/3)

1r {U(to — iﬁ, t())

Te { Tofexp(—i [ dEH(DO(1)) ]
h Tr {U(to—@ﬂatO)}
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The time contour action functional

We define the following action functional :

Afv] =i InTr {U(to — iﬁ,to)}

Where we used the same time contour ordered evolution
operator
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Why is the action defined like this ?

partition
If we evaluate the action for a static potential function of
then we find statistical
mechanics

iA[v] = —InTr {e_ﬁﬁo} = —InZ = 3Q

A
lim -= = lim Q =FE — ulN
1'—0 6 1'—0

The action functional is therefore a time-dependent
generalization of the familiar energy functional
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If one takes the derivative of the action respect to the potential one
finds:

~

0 A|v]

ov(r,t) lvy=v_

The action is therefore a generating function for the density if
one makes changes in the potential.

(Just as the grand potential is in statistical mechanics)
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The action as a density functional

We then define the density functional :

~

Aln| = —Alv] + /Cdln(l)v(l)

We regard v[n] as a functional of n (Runge-Gross theorem).

This functional has the property :

~

0A[n| 0A ov(l) ., . ov(1) .
5n(2) /Cdl so(D) on(2) V2T /Cdl D@ = V)

0A[n]
on(r,t)

= v(r,t)
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So this is our variational principle:

0A[n]

on(r,t) = olr,?)

input v(rt)
known external potential
of the system of interest

output
density n[v](rt)
This requires in practice an approximation for the functional A[n].

We are going to use the Kohn-Sham method to make the
finding of such approximations easier
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Kohn-Sham equations

We define similar functionals for a noninteracting system:

A A

Hy(t) = T+ Vi() Vi(t) = [ deiwyo, e,

~

Aglvg] =1 In'Tr {(A]S(to — Zﬂ,to)}

There is nothing new to derive. We already know that

SA, U]
ovg(r, )

= n(r,t)

’U_|_ =V _
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Similar to the interacting system we define

Agln]

The xc action functional is then defined as

~

—As[vs]—l—/cdln(l)vs(l)

Ageln]

A,ln] — Aln] —% /C a1 /C d25(t1,t2)Tr(11

)n(2)

—I‘2|

Differentiation gives :

Vge(1)

0Azc 0As

~on(l) on(1)
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Since this is the potential for a noninteracting system with density n(r,t) we
obtain the Kohn-Sham equations :

M input known external potential

(5 V2 (1) om(1) + wee(1)5(1) = i0ii(1)

— 0 Az

out u}cénsit n[v] How to find an
° / approximation for this ?
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Connection to the time-dependent pair-correlation function

We connect the true system to the Kohn-Sham system by means of
a coupling constant integration (standard trick of ground state DFT):

4 )

AMuy] = ilnTr { Toexp (—2/ dt(T+V>\(t)+)\W)) >
C

\

/

7\ = /dr n(r)vy(rt) <:— A\ dependence of

the potential is
We then use such that density
is A independent

N N 1 A)\
Al[vl] :AO[UQ]+/ d)\d [U)\]
; )
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The differentiation with respect to the coupling constant then gives

Alv] = AgJv] —I—/O1 d)\/odln( dm / d)\/ d1d2w(1,2)I*(1,2)
(1 2) 5(t17t2) ﬂ

r] — 12 Diagonal two-particle density
matrix

from which we then directly obtain

Ageln] = %/Cdllew(l,Q) (/OldAF/\(l,Q) - n(l)n(2)>
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We thus obtain the time-dependent generalization of the
coupling constant integration formula of ground state DFT

Apelnl = 5 [ d1a2 22 n()n()(g(12) - 1

1 — ro| f

G(1,2) = /1 d\ g (1,2) i} Coupling constant averaged
0

pair correlation function
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Time-dependent xc-potential

n(2)n(3) 6g(2,3)

vpe(1) = 2z :/dr2n(rzt1)(§(r1,rz;t1) 1)

r1 — 1o

1
— 2d3 6 (to. 1
*2/cd 30ty t) 1= (D)

Long range -1/r Short range with
behavior outside step structure
finite system

RvL, Oleg Gritsenko, Evert Jan Baerends,

A / '_|' — oM See for ground state DFT e.g.
""“‘“—-*/ ZLeitschrift fur Physik D33,229 (1995)

RATAL DETAMCE (BOH)
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Time-local part of the xc-kernel is

The xc-kernel . . . .
proportional to the pair-correlation function

0% Aye

B 6(t1,t9)
fre(1,2) = on(1)on(2)

— |I‘1 - PZ‘ (§(172) o 1)

5(t1,t3) -(5§(1,3) | 5§(1,2)_

C ( )\1'1 —r3| | on(2) on(3) R Time
nonlocal part

of the
xc-kernel

v

Responsible for frequency dependence : memory

1 O(t3,t4) . 02G(3,4)
+2 /OdSCM r3 — ry] (3)n(4) on(3)on(4)
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Many-body perturbation theory

We define the contour-ordered Green function as :

G(lv 2) — _7;<TC[@EH(1)77E}{(2)]> — H(tlv t2)G>(17 2) 0(t27 tl)G<(17 2)

G~ (1,2) = —z(z@H(l)zﬂL(Z» Propagation of a “particle” (added electron)

G<(1, 2) = Z(iﬂ}{@)lﬁ]{(l» Propagation of a “hole” ( removed electron)
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The equation of motion

(10y, — h(1))G(1,2) = 6(1,2) + /d3 Y|G(1,3)G(3,2)

LN BN

Time-dependent The self-energy operator ) [G] is
eXter'naIF;‘leIds nonhermitian and nonlocal

| in space and time.
are treated exactly All the physics of electron correlations

nonperturbatively is contained in ) [G]!
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The conservation laws ( G.Baym, Phys.Rev. 127, 1391 (1962))

Conservation laws, such as those of energy, momentum, angular
momentum and particle number, are automatically obeyed when we
use so-called Phi-derivable approximations for the self-energy.

5O
5G(2,1)

@ - e Emy L

For Phi-derivable approximations the expectation values are
independent from the way they are calculated

$(1,2) =
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Conserving many-body approximations

Hartree-Fock > = ? - *’r—fﬁ

I et @@ﬂ
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Action functionals

The equation of motion of the Green function can be derived
from an action principle with action:

iA[G] = @[G] —tr {In(-G™") + (Gy'G — 1)}

where ﬁ
0P

Baym’s Phi-functional =) E =>>

and

Gy '(1,2) = (i0;, — h(1))d(1,2)

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci, Phys.Rev.B72,235109 (2005) )
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Proof:

iA[G] = ®[G] —tr {In(-G™1) + (GG — 1)}

A s
:> O_Z@_5GIG GO XG

= G,'G=1+%G

(10y, — h(1))G(1,2) = 6(1,2) + /d?) >(1,3)G(3,2)

0P

R o
oG
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Constructing new conserving xc-functionals with memory

Let us now restrict the domain of Green functions to those of noninteracting
systems with external potential vs

Alvs| = A[Gs|vs]]

where (10, — hs(1))Gs(1,2) = 6(1,2)
We can now look for the stationary point in the restricted
domain:

0A

~——0

0V

Because of the density-potential relation this is a density functional theory!!
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Let us see what we get :
iAfvs] = ®[Gs] —tr {In(-G; ") + (Gy'Gs — 1)}

== 0=iJA="tr <(Z[G8]—G;1+G_1)5(SS 0V ¢

\ /

We obtain the following equation for the xc-potential :

/ 02xs(1,2)0,0(2) = —i / 243G (1, 2)(S[GL](2.3) — 5(2,3)us (3))Ga (3. 1)
C

{X C

i

Kohn-Sham density These are the TDOEP equations
reponse function
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We can take another functional derivative and obtain equations
for the xc-kernel of TDDFT.

We obtain, for instance, within the x-only approximation:

1. Tiv,
T o
O

LIRSS

This equation has recently been solved for atomic systems
(M.Hellgren,U.von Barth, Phys.Rev.B78, | 5107 (2008),
J.Chem.Phys. 131,044110 (2009))

L2 =2
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Example |l: GW within TDDFT (Klein functional)

1 1 1
Pow = -3 7 ~ 5 T e
Yow = & + 8 + EE + ...

The expression for the xc-kernel becomes :
—— f“ — _ j f e .
O o= ooy
P O
i!"l’m o
A AT AT AN
* nd 2 <ot 2

S PAVAVAVAVL S

AN = W
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Important properties of the variationally derived functionals

- The zero-force, zero-torque theorems of TDDFT are obeyed

0 = /drn(rt)vac[n](rt)

- The density response functions derived from the xc-kernels
satisfy important sumrules.

- Correlation induced memory naturally included

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci,
Phys.Rev.B72,235109 (2005) )
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Luttinger Ward form of the functional

By using the Dyson equation we can transform the
functional to a different form:

iAg[G] = ®[G] — tr {In(-G™") + (G;'G - 1)}

Klein functional (Phys.Rev.121,950, (1961))

iAo|G] = ®[G] —tr {SG+In(E -Gy}

Luttinger-Ward functional (Phys.Rev.118,1417 (1960))

Nils Erik Dahlen, RvL, Ulf von Barth, Phys.Rev.A73,012511 (2006)
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If we differentiate the LWV functional at fixed external potential we
find that

i0A = tr {(% - 2)5(;} —tr {(G— (2 -Gy hHex) =0

The Luttinger-Ward functional is stationary when the Dyson equation
is obeyed and when the self-energy is Phi-derivable :

0P

G:G0+G02G — =
0G

)

The Klein and LWV functional are equivalent when
evaluated for interacting Green functions but different
when evaluated on a smaller domain.
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Variational TDDFT :The Luttinger-WVard functional

iALw[st] — (I)[GS] — tr {Z[Gs]Gs + IH(E[GS] - Gal)}

The expression for the xc-kernel from an x-only Phi functional :
S fe

58668 10
& L2 2

D+ P T D
I D

~ ~

G =Ggo+ Goz[Gs]G
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Luttinger-Ward functional applied to atoms and molecules

Dpipo

e | =

O 0O
SIS 3% B

TABLE I: Total energies calenlated from the self-consistent Green funetion and from the Luttinger-
Ward functional evaluated at the HF and LDA Green functions. All energies are in Hartrees.

.(2)

Fixy|GLDa] Eryy | GHF| SC
He ~2.8037 -2.20649 -2.80969
Be -14.5953 -14.6405 -14.6409
No -128.8068 -128,83352 -128.8339
Mg - 190, 8933 - 10099003 -199.9097
Mg=T 1990918 -199.1025 199, 10820
Ha -1.1595 -1.165%8 -1.1659
[.iH -8.0394 -R.0526 -R.0528

(Nils Erik Dahlen, RvL, |.Chem.Phys. 122, 164102 (2005),
Nils Erik Dahlen, RvL, UIf von Barth, Phys.Rev.A73,012511 (2006) )
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Luttinger-Ward (GW)

Total energies C-GW VLG |
He -2.9278 -2.9277
Be -14.7024 -14.7017
Ne -129.0499 -129.0492
Mg -200.1762 -200.1752
H, -1.1887 -1.1888
LiH -8.0995 -8.0997
2-electron removal energies
SC-GW | HF |WWIGL ]| Exp
Mg-Mg2+ 2259 eV| 21.33 eV | 22.58¢eV | 22.68 eV
RaBelt  |27.59eV| 26.17eV | 2757 eV | 27.53 eV
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Conclusions

- There is clear need to go beyond the adiabatic approximation
to describe various physical phenomena
(double excitations, quantum transport,..)

- Temporal nonlocality implies spatial nonlocality, in order to comply
with basic conservation laws

- The nonequilibrium many-body theory can be used to derive new
TDDFT functionals with nice properties
- Conserving
- Memory
- Derivative discontinuities

This is a very nice feature of the variational schemes
based on the Luttinger-Ward functional
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Outlook

- We aim to test variationally derived functionals for quantum transport
phenomena as a first test case (work in progress in Jyvaskyla)
Collaboration with Gianluca Stefanucci (Rome)

- Maria Hellgren and Ulf von Barth have been exploring in detail the
xc-kernels that can be derived from the action formalism.
The Klein functionals leads to problems for spectral properties:
there is a need to explore the Luttinger-Ward functionals.

- However:

Correlation energies and potentials, van der Waals coefficients and
polarizabilities have turned out to be of excellent quality

(the Peuckert iteration scheme)

Monday, November 16, 2009



Acknowledgements

This work has been part of a collective effort of the

‘the Lund gang’

- UIf von Barth

- Carl-Olof Almbladh
- Maria Hellgren

- Gianluca Stefanucci
- Nils Erik Dahlen

- Stefan Kurth

- Claudio Verdozzi

Monday, November 16, 2009



