Conserving approximations in time-dependent density-functional theory: Connections to many-body perturbation theory

Robert van Leeuwen

Department of
Physics
Nanoscience Center
University of
Jyväskylä
Finland

(ETSF)

Overview

Time-dependent density functional theory

- Current status and need for improvements
- Nonlocality in space and time.

Many-body approach to TDDFT

- Conserving memory functionals: how to make them?
- Functionals derived from the Luttinger-Ward action

Conclusions and outlook

Time-dependent Kohn-Sham equations

output density n[v]

All the memory and initial state dependence is contained in the xc-potential

The xc-kernel

Many TDDFT calculations are carried our in the linear response regime.

$$v_{xc}(1) = v_s(1) - v(1) - v_H(1)$$

$$f_{xc}(1,2) = \frac{\delta v_s(1)}{\delta n(2)} - \frac{\delta v(1)}{\delta n(2)} - \frac{\delta(t_1 - t_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

We can then define the response functions

$$\chi(1,2) = \frac{\delta n(1)}{\delta v(2)} \qquad \chi_s(1,2) = \frac{\delta n(1)}{\delta v_s(2)}$$

We obtain the well-known linear response equation

Poles at the true excitation energies

The xc-kernel must have frequency dependence to generate extra poles:

The memory in the xc-potential contains the physics of double and higher excitations, excitons....

In the adiabatic local density approximation (ALDA) we have

$$v_{xc}^{ALDA}(\mathbf{r}t) = \frac{d\epsilon_{xc}}{dn}(n(\mathbf{r}t))$$
$$f_{xc}^{ALDA}(\mathbf{r}t, \mathbf{r}'t') = \frac{d^2\epsilon_{xc}}{dn^2}(n_0(\mathbf{r}))\delta(\mathbf{r} - \mathbf{r}')\delta(t - t')$$

The adiabatic local density approximation is both local in space and in time.

One of the first functionals that went beyond the ALDA was the so-called Gross-Kohn kernel which was local in space and nonlocal in time.

However, this functional violated basic conservation laws. Why is that?

Spatial vs. temporal nonlocality

The zero-force theorem of TDDFT tells that

$$0 = \int d\mathbf{r} n(\mathbf{r}t) \nabla v_{xc}[n](\mathbf{r}t)$$

i.e. the xc-potential (being 'internal') does not exert a force on the system.

This relation is satisfied for the ALDA but will not in general be satisfied for approximate potentials:

For instance, the so-called KLI approximation for the exchange potential violates it, as does the Gross-Kohn approximation.

Example, TDKLI for a sodium cluster (Na₅)

M.Mundt, S.Kümmel, RvL, P-G.Reinhard, Phys.Rev.A75, 050501(R) (2007)

Differentiation of the zero-force constraint with respect to the density leads to

$$\int d\mathbf{r}' f_{xc}(\mathbf{r}, \mathbf{r}'; \omega) \nabla' n(\mathbf{r}') = \nabla v_{xc}(\mathbf{r})$$

Suppose in a weakly inhomogeneous system the xc-kernel has a finite range, then (Giovanni Vignale)

$$\nabla n(\mathbf{r}) \int d\mathbf{r}' f_{xc}(\mathbf{r}, \mathbf{r}'; \omega) = \nabla v_{xc}(\mathbf{r})$$

$$\int d\mathbf{r}' f_{xc}(\mathbf{r}, \mathbf{r}'; \omega) = f_{xc}(\mathbf{k} = 0, \omega)$$

Contradiction: Nonlocality in time incompatible with locality in space. Memory functionals are nonlocal in space and time

A density functional that only depends on the density or its gradients can not see the motion of the entire slab

The density functional needs to have a long range to see the density change at the edges

(picture from Carsten Ullrich)

New functionals beyond ALDA: the many-body approach

It must be possible to derive the xc-potential from many-body methods

Why is this interesting or useful for TDDFT?

I) Gives insight in how e-e interactions affect the properties of time-dependent xc-functionals (nonlocality, memory....)

"MBPT is easy while TDDFT is simple" (M.Gatti)

2) Leads to explicit constructions of functionals (with nice properties as e.g. conserving approximations)

We need a many-body approach for time-dependent systems

Keldysh theory in 2 slides

The time-dependent Hamiltonian

$$\hat{H}(t) = \hat{h}(t) + \hat{W}$$
 two-body interactions
$$\hat{h}(t) = \sum_{i=1}^{N} h(\mathbf{r}_i t)$$
 time-dependent external potential
$$h(\mathbf{r},t) = -\frac{1}{2} \nabla^2 + v(\mathbf{r},t) - \mu$$

Expectation values: Before switch-on of the field

$$\langle \hat{O} \rangle = \text{Tr} \left\{ \hat{\rho} \, \hat{O} \right\}$$

$$\hat{\rho} = \frac{e^{-\beta \hat{H}_0}}{\text{Tr} \, e^{-\beta \hat{H}_0}}$$

The time contour

L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965)

The time contour action functional

We define the following action functional:

$$\tilde{A}[v] = i \ln \operatorname{Tr} \left\{ \hat{U}(t_0 - i\beta, t_0) \right\}$$

Where we used the same time contour ordered evolution operator

Why is the action defined like this?

If we evaluate the action for a static potential then we find

partition function of statistical mechanics

$$i\tilde{A}[v] = -\ln \operatorname{Tr} \left\{ e^{-\beta \hat{H}_0} \right\} = -\ln Z = \beta \Omega$$

$$\lim_{T \to 0} \frac{i\tilde{A}}{\beta} = \lim_{T \to 0} \Omega = E - \mu N$$

The action functional is therefore a time-dependent generalization of the familiar energy functional

If one takes the derivative of the action respect to the potential one finds:

$$\frac{\delta \tilde{A}[v]}{\delta v(\mathbf{r},t)}\Big|_{v_{+}=v_{-}} = n(\mathbf{r},t)$$

The action is therefore a generating function for the density if one makes changes in the potential.

(Just as the grand potential is in statistical mechanics)

The action as a density functional

We then define the density functional:

$$A[n] = -\tilde{A}[v] + \int_C d1n(1)v(1)$$

We regard v[n] as a functional of n (Runge-Gross theorem).

This functional has the property:

$$\frac{\delta A[n]}{\delta n(2)} = -\int_C d1 \, \frac{\delta \tilde{A}}{\delta v(1)} \frac{\delta v(1)}{\delta n(2)} + v(2) + \int_C d1 \, n(1) \frac{\delta v(1)}{\delta n(2)} = v(2)$$

$$\frac{\delta A[n]}{\delta n(\mathbf{r},t)} = v(\mathbf{r},t)$$

So this is our variational principle:

This requires in practice an approximation for the functional A[n].

We are going to use the Kohn-Sham method to make the finding of such approximations easier

Kohn-Sham equations

We define similar functionals for a noninteracting system:

$$\hat{H}_s(t) = \hat{T} + \hat{V}_s(t) \qquad \qquad \hat{V}_s(t) = \int d\mathbf{r} \,\hat{n}(\mathbf{r}) v_s(\mathbf{r}, t)$$

$$\tilde{A}_s[v_s] = i \ln \operatorname{Tr} \left\{ \hat{U}_s(t_0 - i\beta, t_0) \right\}$$

There is nothing new to derive. We already know that

$$\frac{\delta \tilde{A}_s[v_s]}{\delta v_s(\mathbf{r},t)}\Big|_{v_+=v_-} = n(\mathbf{r},t)$$

Similar to the interacting system we define

$$A_s[n] = -\tilde{A}_s[v_s] + \int_C d1n(1)v_s(1) \qquad \frac{\delta A_s[n]}{\delta n(\mathbf{r}, t)} = v_s(\mathbf{r}, t)$$

The xc action functional is then defined as

$$A_{xc}[n] = A_s[n] - A[n] - \frac{1}{2} \int_C d1 \int_C d2 \, \delta(t_1, t_2) \frac{n(1)n(2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Differentiation gives:

$$v_{xc}(1) = \frac{\delta A_{xc}}{\delta n(1)} = \frac{\delta A_s}{\delta n(1)} - \frac{\delta A}{\delta n(1)} - v_H(1)$$

$$v_{xc}(1) = v_s(1) - v(1) - v_H(1)$$

$$v_s(1) = v(1) + v_H(1) + v_{xc}(1)$$

Since this is the potential for a noninteracting system with density n(r,t) we obtain the Kohn-Sham equations:

$$\left(-\frac{1}{2}\nabla^2 + v(1) + v_H(1) + v_{xc}(1)\right)\phi_i(1) = i\partial_t\phi_i(1)$$

$$n(1) = \sum_{i=1}^{\infty} f_i |\phi_i(1)|^2 \qquad v_{xc}(1) = \frac{\delta A_{xc}}{\delta n(1)}$$

output density n[v]

How to find an approximation for this?

Connection to the time-dependent pair-correlation function

We connect the true system to the Kohn-Sham system by means of a coupling constant integration (standard trick of ground state DFT):

$$\tilde{A}^{\lambda}[v_{\lambda}] = i \ln \operatorname{Tr} \left\{ T_C \exp \left(-i \int_C dt \left(\hat{T} + \hat{V}_{\lambda}(t) + \lambda \hat{W} \right) \right) \right\}$$

$$\hat{V}_{\lambda} = \int d\mathbf{r} \, \hat{n}(\mathbf{r}) v_{\lambda}(\mathbf{r}t) \qquad \qquad \mathbf{\Box}$$

We then use

$$\tilde{A}^{1}[v_{1}] = \tilde{A}^{0}[v_{0}] + \int_{0}^{1} d\lambda \, \frac{dA^{\lambda}[v_{\lambda}]}{d\lambda}$$

 λ dependence of the potential is such that density is λ independent

The differentiation with respect to the coupling constant then gives

$$\tilde{A}[v] = \tilde{A}_s[v_s] + \int_0^1 d\lambda \int_C d1 n(1) \frac{dv_{\lambda}(1)}{d\lambda} + \int_0^1 d\lambda \int_C d1 d2 w(1, 2) \Gamma^{\lambda}(1, 2)$$

$$w(1,2) = \frac{\delta(t_1, t_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Diagonal two-particle density matrix

from which we then directly obtain

$$A_{xc}[n] = \frac{1}{2} \int_C d1d2 \, w(1,2) \left(\int_0^1 d\lambda \, \Gamma^{\lambda}(1,2) - n(1)n(2) \right)$$

We thus obtain the time-dependent generalization of the coupling constant integration formula of ground state DFT

$$A_{xc}[n] = \frac{1}{2} \int_{C} d1d2 \frac{\delta(t_1, t_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} n(1)n(2)(\bar{g}(1, 2) - 1)$$

$$\bar{g}(1,2) = \int_0^1 d\lambda \, g_\lambda(1,2) \quad \longleftarrow$$

Coupling constant averaged pair correlation function

$$g(1,2) = \frac{\Gamma(1,2)}{n(1)n(2)}$$

Time-dependent xc-potential

$$v_{xc}(1) = \frac{\delta A_{xc}}{\delta n(1)} = \int d\mathbf{r}_2 \frac{n(\mathbf{r}_2 t_1)(\bar{g}(\mathbf{r}_1, \mathbf{r}_2; t_1) - 1)}{|\mathbf{r}_1 - \mathbf{r}_2|} + \frac{1}{2} \int_C d2d3 \, \delta(t_2, t_3) \, \frac{n(2)n(3)}{|\mathbf{r}_2 - \mathbf{r}_3|} \frac{\delta \bar{g}(2, 3)}{\delta n(1)}$$

Long range - I/r behavior outside finite system

Short range with step structure

See for ground state DFT e.g. RvL, Oleg Gritsenko, Evert Jan Baerends, Zeitschrift für Physik D33, 229 (1995)

The xc-kernel

Time-local part of the xc-kernel is proportional to the pair-correlation function

$$f_{xc}(1,2) = \frac{\delta^2 A_{xc}}{\delta n(1)\delta n(2)} \left(= \frac{\delta(t_1, t_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} (\bar{g}(1, 2) - 1) \right)$$

$$+ \int_C d3 \, n(3) \frac{\delta(t_1, t_3)}{|\mathbf{r}_1 - \mathbf{r}_3|} \left[\frac{\delta \bar{g}(1, 3)}{\delta n(2)} + \frac{\delta \bar{g}(1, 2)}{\delta n(3)} \right]$$

Time nonlocal part of the xc-kernel

Responsible for frequency dependence: memory

Many-body perturbation theory

We define the contour-ordered Green function as:

$$G(1,2) = -i\langle T_C[\hat{\psi}_H(1)\hat{\psi}_H^{\dagger}(2)]\rangle = \theta(t_1, t_2)G^{>}(1,2) + \theta(t_2, t_1)G^{<}(1,2)$$

$$G^{>}(1,2)=-i\langle\hat{\psi}_{H}(1)\hat{\psi}_{H}^{\dagger}(2)\rangle$$
 Propagation of a "particle" (added electron)

$$G^{<}(1,2)=i\langle\hat{\psi}_{H}^{\dagger}(2)\hat{\psi}_{H}(1)\rangle$$
 Propagation of a "hole" (removed electron)

The equation of motion

$$(i\partial_{t_1} - h(1))G(1,2) = \delta(1,2) + \int d3 \,\Sigma[G](1,3)G(3,2)$$

Time-dependent external fields are treated exactly nonperturbatively

The self-energy operator \sum [G] is nonhermitian and nonlocal in space and time.

All the physics of electron correlations is contained in $\sum [G]!$

Conservation laws, such as those of energy, momentum, angular momentum and particle number, are automatically obeyed when we use so-called Phi-derivable approximations for the self-energy.

$$\Sigma(1,2) = \frac{\delta\Phi}{\delta G(2,1)}$$

For Phi-derivable approximations the expectation values are independent from the way they are calculated

Conserving many-body approximations

Hartree-Fock
$$\Sigma = {}^{\circ} + {}^{\circ}$$

Action functionals

The equation of motion of the Green function can be derived from an action principle with action:

$$iA[G] = \Phi[G] - \text{tr} \left\{ \ln(-G^{-1}) + (G_0^{-1}G - 1) \right\}$$

where

Baym's Phi-functional
$$\Longrightarrow$$
 $\frac{\delta\Phi}{\delta G} = \Sigma$

and

$$G_0^{-1}(1,2) = (i\partial_{t_1} - h(1))\delta(1,2)$$

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci, Phys.Rev.B72, 235109 (2005))

Proof:

$$iA[G] = \Phi[G] - \text{tr} \left\{ \ln(-G^{-1}) + (G_0^{-1}G - 1) \right\}$$

$$0 = i\frac{\delta A}{\delta G} = \frac{\delta \Phi}{\delta G} + G^{-1} - G_0^{-1} \qquad \qquad \mathbf{x} \ \mathbf{C}$$

$$G_0^{-1}G = 1 + \Sigma G$$

$$(i\partial_{t_1} - h(1))G(1,2) = \delta(1,2) + \int d3 \Sigma(1,3)G(3,2)$$

$$\frac{\delta\Phi}{\delta G} = \Sigma$$

Constructing new conserving xc-functionals with memory

Let us now restrict the domain of Green functions to those of noninteracting systems with external potential $v_{\rm S}$

$$A[v_s] = A[G_s[v_s]]$$

where

$$(i\partial_{t_1} - h_s(1))G_s(1,2) = \delta(1,2)$$

We can now look for the stationary point in the restricted domain:

$$\frac{\delta A}{\delta v_s} = 0$$

Because of the density-potential relation this is a density functional theory!!

Let us see what we get:

$$iA[v_s] = \Phi[G_s] - \text{tr} \left\{ \ln(-G_s^{-1}) + (G_0^{-1}G_s - 1) \right\}$$

$$0 = i\delta A = \operatorname{tr} \left\{ (\Sigma[G_s] - G_s^{-1} + G^{-1}) \frac{\delta G_s}{\delta v_s} \, \delta v_s \right\}$$

We obtain the following equation for the xc-potential:

$$\int_C d2\chi_s(1,2)v_{xc}(2) = -i\int_C d2d3G_s(1,2)(\Sigma[G_s](2,3) - \delta(2,3)v_H(3))G_s(3,1)$$

Kohn-Sham density reponse function

These are the TDOEP equations

We can take another functional derivative and obtain equations for the xc-kernel of TDDFT.

We obtain, for instance, within the x-only approximation:

This equation has recently been solved for atomic systems (M.Hellgren, U.von Barth, Phys. Rev. B78, 115107 (2008), J.Chem. Phys. 131, 044110 (2009))

Example II: GW within TDDFT (Klein functional)

$$\Phi_{\rm GW} = -\frac{1}{2} \bigoplus -\frac{1}{4} \bigoplus -\frac{1}{6} \bigoplus + \dots$$

The expression for the xc-kernel becomes:

Important properties of the variationally derived functionals

- The zero-force, zero-torque theorems of TDDFT are obeyed

$$0 = \int d\mathbf{r} n(\mathbf{r}t) \nabla v_{xc}[n](\mathbf{r}t)$$

- The density response functions derived from the xc-kernels satisfy important sumrules.
- Correlation induced memory naturally included

(Ulf von Barth, Nils Erik Dahlen, RvL, Gianluca Stefanucci, Phys.Rev.B72, 235109 (2005))

Luttinger Ward form of the functional

By using the Dyson equation we can transform the functional to a different form:

$$i\tilde{A}_0[G] = \Phi[G] - \text{tr} \left\{ \ln(-G^{-1}) + (G_0^{-1}G - 1) \right\}$$

Klein functional (Phys.Rev.121,950, (1961))

$$i\tilde{A}_0[G] = \Phi[G] - \text{tr } \{\Sigma G + \ln(\Sigma - G_0^{-1})\}$$

Luttinger-Ward functional (Phys.Rev.118,1417 (1960))

Nils Erik Dahlen, RvL, Ulf von Barth, Phys.Rev.A73, 012511 (2006)

If we differentiate the LW functional at fixed external potential we find that

$$i\delta \tilde{A} = \operatorname{tr} \left\{ \left(\frac{\delta \Phi}{\delta G} - \Sigma \right) \delta G \right\} - \operatorname{tr} \left\{ \left(G - (\Sigma - G_0^{-1})^{-1} \right) \delta \Sigma \right\} = 0$$

The Luttinger-Ward functional is stationary when the Dyson equation is obeyed and when the self-energy is Phi-derivable:

$$G = G_0 + G_0 \Sigma G \qquad \frac{\partial \Phi}{\partial G} = \Sigma$$

The Klein and LW functional are equivalent when evaluated for interacting Green functions but different when evaluated on a smaller domain.

Variational TDDFT: The Luttinger-Ward functional

$$i\tilde{A}_{LW}[v_s] = \Phi[G_s] - \text{tr } \{\Sigma[G_s]G_s + \ln(\Sigma[G_s] - G_0^{-1})\}$$

The expression for the xc-kernel from an x-only Phi functional:

Luttinger-Ward functional applied to atoms and molecules

$$\Phi_{\text{MP2}} = -\frac{1}{2} \bigoplus -\frac{1}{4} \bigoplus -\frac{1}{4} \bigoplus$$

$$\Sigma_{\text{MP2}} = -\frac{1}{2} \bigoplus + \frac{1}{4} \bigoplus$$

TABLE I: Total energies calculated from the self-consistent Green function and from the Luttinger-Ward functional evaluated at the HF and LDA Green functions. All energies are in Hartrees.

	$E_{\mathrm{LW}}^{(2)}[G_{\mathrm{LDA}}]$	$E_{LW}^{(2)}[G_{HF}]$	SC
Не	-2.8937	-2.8969	-2.8969
Be	-14.5953	-14.6405	-14.6409
Ne	-128.8068	-128.8332	-128.8339
Mg	-199.8933	-199.9093	-199.9097
Mg^{2+}	-199.0918	-199.1025	-199.1020
H_2	-1.1595	-1.1658	-1.1659
LiH	-8.0394	-8.0526	-8.0528

(Nils Erik Dahlen, RvL, J.Chem.Phys. 122, 164102 (2005), Nils Erik Dahlen, RvL, Ulf von Barth, Phys.Rev.A73, 012511 (2006))

Luttinger-Ward (GW)

Total energies

	SC-GW	LW[G _{HF}]	
He	-2.9278	-2.9277	
Be	-14.7024	-14.7017	
Ne	-129.0499	-129.0492	
Mg	-200.1762	-200.1752	
H ₂	-1.1887 -1.1888		
LiH	-8.0995	-8.0997	

2-electron removal energies

	SC-GW	Ħ	LW[G _{HF}]	Exp
Mg-Mg ²⁺	22.59 eV	21.33 eV	22.58 eV	22.68 eV
Be-Be ²⁺	27.59 eV	26.17 eV	27.57 eV	27.53 eV

Conclusions

- There is clear need to go beyond the adiabatic approximation to describe various physical phenomena (double excitations, quantum transport,..)
- Temporal nonlocality implies spatial nonlocality, in order to comply with basic conservation laws
- The nonequilibrium many-body theory can be used to derive new TDDFT functionals with nice properties
 - Conserving
 - Memory
 - Derivative discontinuities

This is a very nice feature of the variational schemes based on the Luttinger-Ward functional

Outlook

- We aim to test variationally derived functionals for quantum transport phenomena as a first test case (work in progress in Jyväskylä) Collaboration with Gianluca Stefanucci (Rome)
- Maria Hellgren and Ulf von Barth have been exploring in detail the xc-kernels that can be derived from the action formalism. The Klein functionals leads to problems for spectral properties: there is a need to explore the Luttinger-Ward functionals.
- However:

Correlation energies and potentials, van der Waals coefficients and polarizabilities have turned out to be of excellent quality (the Peuckert iteration scheme)

Acknowledgements

This work has been part of a collective effort of the

'the Lund gang'

- Ulf von Barth
- Carl-Olof Almbladh
- Maria Hellgren
- Gianluca Stefanucci
- Nils Erik Dahlen
- Stefan Kurth
- Claudio Verdozzi