Kadanoff-Baym approach to time-dependent
quantum transport through correlated systems
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Overview

- Aim and motivation
- Theoretical approach to quantum transport
- The Kadanoff-Baym method
- Correlated systems coupled to macroscopic leads

- Results

- Conclusions
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Motivation

In nanoscience one aims to understand and control systems at
the nanoscale.

Manipulation of nanosystems requires interactions with a
time-dependent environment

Conduction through a
single Hy molecule

Differaritial conductance (2a2/h)
b3

R.H.M.Smit et al.
Nature 419,906 (2002)

dGrdV [au)
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The importance of dynamics

In future devices based on ‘molecular electronics’ we are not mainly

interested in the steady states:
The operational speed needs to be designed and controlled

The main interest will be in fast switching of the devices!

This involves:

- switching times (AC fields, lasers)
- study of transients
- peak currents rather than time-averaged ones

(stability of the devices)

We need fundamental many-electron nonequilibrium quantum
mechanics for open systems at short time-scales
(nice topic for the theorists with rich physics.....)
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The time-dependent quantum transport problem

Consider a molecule (or quantum dot) attached to leads

Problem:

Calculate the time evolution of observables of this system when a
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bias is applied.
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Theoretical challenges

- We are dealing with an open quantum system
- We are dealing with a many-particle system

- We are dealing with a nonequilibrium system
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Theoretical approaches

Time-dependent density functional theory

- Computationally cheap

But
- Lacks a good correlation functional beyond ALDA
- Not all quantities accessible

(e.g. spectral functions,Wigner functions,..)

Kadanoff-Baym equations

- Systematic perturbation theory
- Access to many observables

But
- Computationally expensive
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Our approach

- We use Kadanoff-Baym approach to study the basic physics of time-
dependent processes that play a role in correlated quantum transport

- bistability, phonons, spin transport,
superconducting leads, AC fields,.....etc.

- We use Kadanoff-Baym approach to benchmark and develop new
correlation functionals beyond ALDA.
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Time-propagation of the Kadanoff-Baym equations

(N.E. Dahlen, RvL,

This method can deal with: Phys.Rev.Lett. 98, 153004 (2007)

, P.Myohanen, A.Stan, G.Stefanucci, RvL
- inhomogeneous open systems Europhys.Lett. 84, 67001 (2008))
- time-dependent external fields

(both in leads and device regions) P.Myohanen, A.Stan, G.Stefanucci, RvL

. . Phys.Rev. B8O, | 15107 (2009),
- electronic interactions

The method is based on the propagation of the equations of motion for the

nonequilibrium Green function, also known as
the Kadanoff-Baym equations. (Kadanoff/Baym 964, Keldysh 1965)

The main ingredient of the method is the nonequilibrium Green function

G(x1t1,Xat2)
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Time evolution of a many-body system

The time-dependent Hamiltonian

e\ A\ e\

F(t) = h(t) + W
AN

Kinetic energy + external potential Two-particle interactions

The goal is calculate the time-dependent expectation values of
observables :

6_61{[0

Tre—BHo

O@) =T {pOu(t)} o=
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The time contour (L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965))

“‘“r —i[3)

Tr {U(to — iﬁ, to)

Tr { Telexp(—i [, i (HO(1)]}
w0t -i8.t0)
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Propagators for nonequilibrium systems

We define the Keldysh contour-ordered Green function as :

G(1,2) = —i(Telbu ()P} (2)]) = 0(t1,12)G™ (1,2) + 0(t2, t)G=(1,2)

il i
G~(1,2) = —i(u (1) (2)) Propagation of a “particle” (added electron)

G~(1,2) = @@L(Z)%@H(l» Propagation of a “hole” (removed electron)

We similarly define the two-particle Green function as :

A

Ga(1,2,3,4) = (=) (Tobu (1) (2)d(3)dL (4)])
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Physical content

The nonequilibrium Green function contains a wealth of detailed
information :

- The expectation value of any one-body operator such as electron
and current densities, the Wigner distribution function and
momentum densities.

- The total energy

- All the electron affinities and ionization energies of the system
(photo-electron spectra)

- The excitation energies of the system (absorption spectra)

- Life-times of excitations
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The equations of motion

The equations of motion for the Green function are given by :

(10, — h(1))G(1, 1)) = 5(1,1) — i/d2w(1, 2)Ga(1, 2,2+ 1)

(—idy — h(1))G(1L,1') = 6(1,1') - z’/d2w(1’,2)G2(1,2,2+, 1)

with boundary conditions

G(Xlt() — iﬁ, 2) = _G(Xlth 2)
G(1,x2tp) = —G(1, %2ty — i)

Friday, November 13, 2009



The simplest collision terms correspond to the following structure of the
two-particle Green function:

1 2

Y S
Go(1,2,2,1") = H = — <= Hartree-Fock
—— terms

1’ 2

We define a self-energy operator as follows

/d2 2(1,2)G(2,1') = —i/de(m) Ga(1,2,21, 1)
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The corresponding self-energy diagrams to 2nd order are :

o 8 e LT

The equation of motion for the Green function attains the form
(these are essentially the Kadanoff-Baym equations):

(10y, — h(1))G(1,2) =6(1,2) + /dS ¥|G(1,3)G(3,2)

A

A space-time nonlocal potential
describing the effects of two-particle
Interactions
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By splitting the equation of motion in components, one obtains the set
of Kadanoff-Baym equations. For example for the lesser component G* :

Time-dependent
external field

(i0;, — h(1))G<(1,2) — /ngEHF(l,thl)G<(X3t1,2)

= /tl d3[27(1,3) — X<(1,3)]G<(3,2) — /tz d2%(1,3)[G7(3,2) — G=(3,2)]

0 to

”

Collision or electron
correlation terms : \

Memory kernels Initial correlations

to—10
+/ d3x1(1,3)G!(3,2)

to
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The conservation laws

From an approximate Green function we can calculate several observables

(n(1)) = —iG(1,17) <= density

<j(1)> = —1 {2—2 — 9 | A(l)} G(l, 1/)1’=1+<}:' current density

(P (1)) :/dxl G(1)) <= momentum

These observables are related by conservation laws such as

O, (n(1)) +V1-(j(1)) =0 <= number conservation

O (P(t1)) = —/dx1 (n(1)EQ) + (1)) x B(1)] <= momentum

conservation

Will these relations be satisfied if the ingredients are calculated
from an approximate Green function !
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The conservation laws ( G.Baym, Phys.Rev. 127, 1391 (1962))

Conservation laws, such as those of energy, momentum, angular
momentum and particle number, are automatically obeyed when we
use so-called Phi-derivable approximations for the self-energy.

5O
5G(2,1)

& - e Ey L

For Phi-derivable approximations the expectation values are
independent from the way they are calculated

$(1,2) =
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Conserving many-body approximations

Hartree-Fock ¥ = ? e i\»ﬁ
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Practical solution of the equations of motion

For practical solution the Green function is expanded into one-particle states

G(17 2) — Z Qpi(Xl)Gij (tlv tQ)SO; (XQ)

tj

Gij(t1,t2) = —i(Toai m(t)a) 4 (ta))

For the one-particle states we can, for instance, use the solutions
to the Hartree-Fock or Kohn-Sham equations

The Kadanoff-Baym equations become equations for time-dependent
matrices
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To evaluate the many-body interactions in the self-energy we calculate

o = [ dx [ ()5 (ol = ¥ )n (K (0
The self-energy for second Born is e.g. given by

St = (e, )= (1) + 2O (1, 1)
SHF (1) = —iz Gra(t,t7) (2viakj — vin)

9
Z( ) (¢, t Z Gri(t, ?f mn(t7t,)qu(t/7t) Vigmk (2Vinpj — Vnipj)

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))

Friday, November 13, 2009



The Kadanoff-Baym equations

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))

with the initial conditions

G<(0,0)
Gl (t,iT)

= iGM(07)
= iGM(—iT)

10GE(t:t) = h(t)G3(t:t
Gl (tiT) = h()G(t it ,

)+ I3(t:t")  (+adjoint)
)+ I!(t:ir)
G~(0,0) = iGM(0T)
Gl(it,t) =iGM(iT)

Splitting the equation of

motion into components
on different parts of the

Keldysh contour

Friday, November 13, 2009

The collision integrals are

St - /"’O ISR DGSE ) + S5 DGARY)]

1 ¢
Jr—_/ d7 $l(t,i7) G (i7, 1)
0

(4

It i7" = / @SR DOV i)

+f3 a7 3 (¢, i7) G (i(F — 7))

and [I'(it,t)]" = Il(t,i7).




Time propagation of the Kadanoff-Baym equations

Solve equilibrium case
on the imaginary axis

g

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007),
A.Stan, N.E.Dahlen, RvL,
J.Chem.Phys.130,224101 (2009))

Y

—>

Carry out time-stepping in the double-time
plane ( possibly with external field applied)
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The hydrogen molecule in a laser field | Equilibrium (no field applied)

v(rt) = E(t)z
E(t) = 0(t —to)Eo

On the time diagonal :
ni(t) = (@] 5 (H)ain (1) = Im G (1)

Im ngo‘g (tla t2) Nonequilibrium (field applied) Im G(fuau (tlv t2)
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The quantum conduction problem

Left electrode

S

Region C

Right electrode

pad

v

a

p» Electric field

%
( )
- -
- +| /8§

+ + +

b

=0
Ur(t) +—S——— UL
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Model Hamiltonian

= his(®

1,0

17,0
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The embedding

The one-body part of the Hamiltonian is projected onto different

regions L Hic Her R
Y o (N
Q0000000 00000000
QOO0O0000OO0O OQOO0000O00O
QOO00000O0O QOO0O000O0OO0O
GIGICICICI®I®I0) GIGIVICIVI®I®IV)
GIGIGICICICICION X I I 1 CICICIOIOIOIoI®
GIGIVICICI®I®IV) GIGIVICICI®I®IV),
QOO0 O00O00O0 QOO0 O00O00O0
OQOO0O0O0000OO0O QOO0O00O0O0OO0O
OQO0O0000O000O OOOO0O0O0000O
HCC
H,, \_J \_J Hen
Hol Hrc
Hir, Hic O
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The Green function and the self-energy attain the form

' G1L Gic Gir . 0 -
G=1|9GcL Ycc Y9re X7 =10 Xoc |G
OrL Ycr YRR 0 0

with equations of motion for the complete system

10,G(z, 2") 0(z,2)1+H(2)G(z,2")
+ /dz »MB(2,2)G(z, )
0(z,2")1 +G(z, 2" YH(Z)

+ / 1% G (2. 2)SMB (. 2)

—10,/G(2,2")
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The projection on region CC gives

{i@zl — Hcc(z)}gcc(z, ') =6(z,2")1 +

> HcaGac(z,2') + /di Sec(2,2)Gac (2, 2)
87
while the projection on region aC gives

{Zaz]- — Haa(z)}gaC (Z, Zl) — HanCC (Za Z/)
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This can be solved to give

gaC (Z7 Z/) — / dz gaa(za 2) HanCC (27 Z/)

where the biased but uncontacted lead Green function
satisfies

{i(?zl — Haa(z)}gaa (2,2") = 0(z,2')1
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The equation of motion

The equation of motion projected on the central region has the form

{i@zl — Hee(2) }gcc(z, Z')

= §(2,2")1 + /dZ [21(\%3’ + Zem} (2,2) Gee(Z,2)

where on top of the a many-body self-energy we also have
an effective embedding self-energy

Yem(2,2") = Z Yemal(z,2") = Z Heoo 8oz, 2 ) Hac
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Calculating the current

The total current flowing out of reservoir (X is given by :

Nq
Io(t) = ¢ dt(t) = —2ReTrc[GS, (t, ) Hac]

This gives after some manipulations:

(4
I(t) = —2ReTrc / ' [ G5 (1) S8 1) + GRo (1, 1) S o 1. 1)
0

—ip
—2ReTr¢ / dt’ [ch(t,tngm,a(t',t)}
0

Memory of initial correlations

Long time limit leads under some assumptions to Meir-Wingreen formula
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The spectral function

The spectral function for a nonequilibrium system is defined as
A(t,t') = TrA(¢,t) At 1) = (Wol{aiu (1), al (')} Wo)

In equilibrium the spectral function only depends on the

difference of the time coordinates and can be Fourier transformed
to give

Aji(w) = 3 [(wNal [Wo) Po(w + EY — BN+
k

+ ) T ai | Wo) P (w — B + EY T
k

It shows peaks at electron addition and removal energies
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In the nonequilibrium case it is convenient to Fourier transform
with respect to the relative times:

dw t i
A(T,w)=/2WA(T+2 T—§) t

which can be calculated from the Green function as

dt t
A(T,w) = —ImTrg o G — QCC](T+ 5 T — 5)

In the long time limit the spectral function becomes independent
of T when a steady state is being reached

lim A(T,w) = A(w)

T'— 00
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Density in the leads

If we define the inbedding self-energy as

Ein,a(zy Z/) — HanCC (Za Z,)HCa

Then the densities in the leads can be calculated from the equation

gOéOé(t—vt—I-) — gaa(t—7t+)+
b [ dedige(t.2) B (2, D) gua Bt
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Results: 4 atom chain connected to 9-row two-dimensional leads
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The Green function

For the highest occupied molecular orbital the Green function
matrix element has the following structure (imaginary part displayed)

30 O

géC,HH(th t2)
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The transient currents

0.12 |

0.08

0.04

U=1.2

HF ——
OB —
GW ——
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Steady state regime

The spectral functions

|.2 (dashed line)

U=

0.8 (solid line)

U=
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The time-evolution of the spectral functions U=12

100
g3 10

0.1
0.01
0.001
0.0001
1e-05

le-06

80

Propagated without bias up to t=40 after which the bias is switched on
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Time-dependent buildup of the |-V curves

Hartree-Fock

second Born

HF 2B
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electron correlations beyond mean-field wash out |-V features
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Bias dependence of the spectral functions

HF

Gap closing
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The time-dependent dipole moment U=12
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The time-evolution of the screened interaction

U=1.2

Im TeW =(t1,t2)

Bare interaction reduced by a factor of two
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Time-dependent lead densities and Friedel oscillations
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The density pattern can be understood from study of the density
response function of the 2D tight binding lattice

daw) = [ o S-Sl

27)% W — €k + €xtq + 7

dk f(€x)(ex — €x+q)
2/

2m)% (w +1in)? — (€x — €k+tq)?

ex = 2T (cosky + cosky)

x(d=aQ,w=0) with Q= (m,m)

is discontinuous at ¢ = 1 leading to a cross-shaped
density pattern

Friday, November 13, 2009



TDDFT : The challenge of a correlation functional with memory

The time-dependent xc-potential that gives the same density as

that of the Kadanoff-Baym scheme, is given by (Sham-Schluter
equation)

dz' Gs(z,2")G (2, 2)vie(2) = /dz’dz" G.(z,2)XB[G](z",2")G (2", 2)

This is not a closed equation unless we, for instance, make the
substitution G — G

If this is done at Hartree-Fock level then we obtain the x-only TDOEP

equations. The performance of this approach is likely to be close to
TDHF,

What if the substitution is done at 2B or GWV level?
Topic of future investigation......
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Conclusions

General conclusions

- An approach to the nonequilibrium quantum conduction problem
is developed which is based on the solution of the Kadanoff-Baym
equations for the nonequilibrium Green functions

- The scheme has build in conservations laws and effects of
electron correlations can be explored by diagrammatic methods

- Macroscopic leads can be incorporated by means of embedding
self-energies that are added on top of the self-energy terms that

describe the electronic interactions

- Lead densities can be calculated from an inbedding self-energy
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Conclusions for the 4 atom chain attached to 2D leads:

- Correlation effects beyond Hartree-Fock have a large influence on dynamics in
quantum transport:

a) At moderate bias the HOMO-LUMO gap closes while in HF
it remains fairly constant
b) The HOMO and LUMO resonances are rather sharp during the
transient time and suddenly broaden when approaching the
steady state. In HF they remain sharp.
c) In the correlated case the transients are more damped and die out earlier
d) Correlations beyond HF wash out features in |-V curves.

- For a 4-atom chain with long range interactions, screening effects are
already considerable.The GW and 2B approximations for this case
give very similar results

- All the oscillations in the TD dipole moment can be understood
in terms of the level structure of the system.
Transient spectroscopy?
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Thank you!

Friday, November 13, 2009



Comparison with exact solution TD Schrodinger equation

0.5 N

045 | |
0al |
035
03 |

0.25 |

0.2 |

0.15
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0.55 —
05 -
0.45 -
0.4
0.35 |-
0.3

0.25 -

0.2

0.15

U=1,w=I

6 site Hubbard

(see also Marc Puig von Friesen,

Claudio Verdozzi,
Carl-Olof Almbladh, cond-mat
0905.2061)

6 site long-range
Coulomb interaction
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