Kadanoff-Baym approach to time-dependent quantum transport through correlated systems

KITP Santa Barbara, I2.II. 2009

- Aim and motivation
- Theoretical approach to quantum transport
- The Kadanoff-Baym method
- Correlated systems coupled to macroscopic leads
- Results
- Conclusions
P.Myöhänen, A.Stan, G.Stefanucci, RvL cond-mat ArXiv:0906.2I36 (PRB 2009 accepted)

Motivation

In nanoscience one aims to understand and control systems at the nanoscale.

Manipulation of nanosystems requires interactions with a time-dependent environment

Conduction through a single H_{2} molecule
R.H.M.Smit et al. Nature 4I9, 906 (2002)

The importance of dynamics

In future devices based on 'molecular electronics' we are not mainly interested in the steady states:
The operational speed needs to be designed and controlled
The main interest will be in fast switching of the devices!
This involves:

- switching times (AC fields, lasers)
- study of transients
- peak currents rather than time-averaged ones (stability of the devices)

We need fundamental many-electron nonequilibrium quantum mechanics for open systems at short time-scales (nice topic for the theorists with rich physics.....)

The time-dependent quantum transport problem

Consider a molecule (or quantum dot) attached to leads

Calculate the time evolution of observables of this system when a bias is applied.

Theoretical challenges

- We are dealing with an open quantum system
- We are dealing with a many-particle system
- We are dealing with a nonequilibrium system

Theoretical approaches

Time-dependent density functional theory

- Computationally cheap

But

- Lacks a good correlation functional beyond ALDA
- Not all quantities accessible (e.g. spectral functions, Wigner functions,..)

Kadanoff-Baym equations

- Systematic perturbation theory
- Access to many observables

But

- Computationally expensive

Our approach

- We use Kadanoff-Baym approach to study the basic physics of timedependent processes that play a role in correlated quantum transport
- bistability, phonons, spin transport, superconducting leads, AC fields,.....etc.
- We use Kadanoff-Baym approach to benchmark and develop new correlation functionals beyond ALDA.

Time-propagation of the Kadanoff-Baym equations

This method can deal with:

- inhomogeneous open systems
- time-dependent external fields (both in leads and device regions)
- electronic interactions
(N.E. Dahlen, RvL,

Phys.Rev.Lett. 98, I 53004 (2007)
P.Myöhänen, A.Stan, G.Stefanucci, RvL Europhys.Lett. 84, 6700I (2008))
P.Myöhänen, A.Stan, G.Stefanucci, RvL Phys.Rev. B80, I I 5IO7 (2009),

The method is based on the propagation of the equations of motion for the nonequilibrium Green function, also known as the Kadanoff-Baym equations. (Kadanoff/Baym I964, Keldysh I965)

The main ingredient of the method is the nonequilibrium Green function

$$
G\left(\mathbf{x}_{1} t_{1}, \mathbf{x}_{2} t_{2}\right)
$$

Time evolution of a many-body system

The time-dependent Hamiltonian

$$
\hat{H}(t)=\hat{h}(t)+\dot{W}
$$

Kinetic energy + external potential
Two-particle interactions

The goal is calculate the time-dependent expectation values of observables :

$$
\langle\hat{O}(t)\rangle=\operatorname{Tr}\left\{\hat{\rho} \hat{O}_{H}(t)\right\} \quad \hat{\rho}=\frac{e^{-\beta \hat{H}_{0}}}{\operatorname{Tr} e^{-\beta \hat{H}_{0}}}
$$

The time contour
(L.V.Keldysh, Sov.Phys.JETP20, IOI8 (I965))

$$
\begin{aligned}
& \langle\hat{O}(t)\rangle=\frac{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right) \hat{U}\left(t_{0}, t\right) \hat{O} \hat{U}\left(t, t_{0}\right)\right\}}{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right)\right\}} \\
& \langle\hat{O}(t)\rangle=\frac{\operatorname{Tr}\left\{T_{C}\left[\exp \left(-i \int_{C} d \bar{t} \hat{H}(\bar{t}) \hat{O}(t)\right]\right\}\right.}{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right)\right\}}
\end{aligned}
$$

Propagators for nonequilibrium systems

We define the Keldysh contour-ordered Green function as :

$$
G(1,2)=-i\left\langle T_{C}\left[\hat{\psi}_{H}(1) \hat{\psi}_{H}^{\dagger}(2)\right]\right\rangle=\theta\left(t_{1}, t_{2}\right) G^{>}(1,2)+\theta\left(t_{2}, t_{1}\right) G^{<}(1,2)
$$

$$
\begin{array}{ll}
G^{>}(1,2)=-i\left\langle\hat{\psi}_{H}(1) \hat{\psi}_{H}^{\dagger}(2)\right\rangle & \text { Propagation of a "particle" (added electron) } \\
G^{<}(1,2)=i\left\langle\hat{\psi}_{H}^{\dagger}(2) \hat{\psi}_{H}(1)\right\rangle & \text { Propagation of a "hole" (removed electron) }
\end{array}
$$

We similarly define the two-particle Green function as :

$$
G_{2}(1,2,3,4)=(-i)^{2}\left\langle T_{C}\left[\hat{\psi}_{H}(1) \hat{\psi}_{H}(2) \hat{\psi}_{H}^{\dagger}(3) \hat{\psi}_{H}^{\dagger}(4)\right]\right\rangle
$$

Physical content

The nonequilibrium Green function contains a wealth of detailed information :
-The expectation value of any one-body operator such as electron and current densities, the Wigner distribution function and momentum densities.

- The total energy
- All the electron affinities and ionization energies of the system (photo-electron spectra)
-The excitation energies of the system (absorption spectra)
- Life-times of excitations

The equations of motion

The equations of motion for the Green function are given by :

$$
\begin{aligned}
& \left(i \partial_{t_{1}}-h(1)\right) G\left(1,1^{\prime}\right)=\delta\left(1,1^{\prime}\right)-i \int d 2 w(1,2) G_{2}\left(1,2,2^{+}, 1^{\prime}\right) \\
& \left(-i \partial_{t_{1}^{\prime}}-h(1)\right) G\left(1,1^{\prime}\right)=\delta\left(1,1^{\prime}\right)-i \int d 2 w\left(1^{\prime}, 2\right) G_{2}\left(1,2,2^{+}, 1^{\prime}\right)
\end{aligned}
$$

with boundary conditions

$$
\begin{aligned}
& G\left(\mathbf{x}_{1} t_{0}-i \beta, 2\right)=-G\left(\mathbf{x}_{1} t_{0}, 2\right) \\
& G\left(1, \mathrm{x}_{2} t_{0}\right)=-G\left(1, \mathrm{x}_{2} t_{0}-i \beta\right)
\end{aligned}
$$

The simplest collision terms correspond to the following structure of the two-particle Green function:

We define a self-energy operator as follows

$$
\int d 2 \Sigma(1,2) G\left(2,1^{\prime}\right)=-i \int d 2 w(1,2) G_{2}\left(1,2,2^{+}, 1^{\prime}\right)
$$

The corresponding self-energy diagrams to 2 nd order are :

The equation of motion for the Green function attains the form (these are essentially the Kadanoff-Baym equations):

$$
\left(i \partial_{t_{1}}-h(1)\right) G(1,2)=\delta(1,2)+\int d 3 \Sigma[G](1,3) G(3,2)
$$

A space-time nonlocal potential describing the effects of two-particle interactions

By splitting the equation of motion in components, one obtains the set of Kadanoff-Baym equations. For example for the lesser component $\mathrm{G}^{<}$:

Time-dependent
external field

$$
\begin{gathered}
\left(i \partial_{t_{1}}-h(1)\right) G^{<}(1,2)-\int d \mathbf{x}_{3} \Sigma^{H F}\left(1, \mathbf{x}_{3} t_{1}\right) G^{<}\left(\mathbf{x}_{3} t_{1}, 2\right) \\
=\int_{t_{0}}^{t_{1}} d 3\left[\Sigma^{>}(1,3)-\Sigma^{<}(1,3)\right] G^{<}(3,2)-\int_{t_{0}}^{t_{2}} d 2 \Sigma^{<}(1,3)\left[G^{>}(3,2)-G^{<}(3,2)\right] \\
+\int_{t_{0}}^{t_{0}-i \beta} d 3 \Sigma^{\rceil}(1,3) G^{\lceil }(3,2)
\end{gathered}
$$

Collision or electron correlation terms :
Memory kernels
Initial correlations

The conservation laws

From an approximate Green function we can calculate several observables
$\langle n(1)\rangle=-i G\left(1,1^{+}\right)$

$$
\begin{gathered}
\langle\mathbf{j}(1)\rangle=-i\left[\frac{\nabla_{1}}{2 i}-\frac{\nabla_{1^{\prime}}}{2 i}+\mathbf{A}(1)\right] G\left(1,1^{\prime}\right)_{1^{\prime}=1^{+}} \ll \\
\left\langle\mathbf{P}\left(t_{1}\right)\right\rangle=\int d \mathbf{x}_{1}\langle\mathbf{j}(1)\rangle
\end{gathered}
$$

These observables are related by conservation laws such as

$$
\begin{aligned}
& \partial_{t_{1}}\langle n(1)\rangle+\nabla_{1} \cdot\langle\mathbf{j}(1)\rangle=0 \quad \text { number conservation } \\
& \partial_{t_{1}}\left\langle\mathbf{P}\left(t_{1}\right)\right\rangle=-\int d \mathbf{x}_{1}[\langle n(1)\rangle \mathbf{E}(1)+\langle\mathbf{j}(1)\rangle \times \mathbf{B}(1)] \quad \begin{array}{l}
\text { momentum } \\
\text { conservation }
\end{array}
\end{aligned}
$$

Will these relations be satisfied if the ingredients are calculated from an approximate Green function ?

Conservation laws, such as those of energy, momentum, angular momentum and particle number, are automatically obeyed when we use so-called Phi-derivable approximations for the self-energy.

$$
\Sigma(1,2)=\frac{\delta \Phi}{\delta G(2,1)}
$$

For Phi-derivable approximations the expectation values are independent from the way they are calculated

Conserving many-body approximations

GW

$+$

Practical solution of the equations of motion

For practical solution the Green function is expanded into one-particle states

$$
\begin{aligned}
& G(1,2)=\sum_{i j} \varphi_{i}\left(\mathbf{x}_{1}\right) G_{i j}\left(t_{1}, t_{2}\right) \varphi_{j}^{*}\left(\mathbf{x}_{2}\right) \\
& G_{i j}\left(t_{1}, t_{2}\right)=-i\left\langle T_{C} \hat{a}_{i, H}\left(t_{1}\right) \hat{a}_{j, H}^{\dagger}\left(t_{2}\right)\right\rangle
\end{aligned}
$$

For the one-particle states we can, for instance, use the solutions to the Hartree-Fock or Kohn-Sham equations

The Kadanoff-Baym equations become equations for time-dependent matrices

To evaluate the many-body interactions in the self-energy we calculate

$$
v_{i j k l}=\int d \mathbf{x} \int d \mathbf{x}^{\prime} \varphi_{i}^{*}(\mathbf{x}) \varphi_{j}^{*}\left(\mathbf{x}^{\prime}\right) v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \varphi_{k}\left(\mathbf{x}^{\prime}\right) \varphi_{l}(\mathbf{x})
$$

The self-energy for second Born is e.g. given by

$$
\begin{aligned}
& \Sigma^{2 B}\left(t, t^{\prime}\right)=\delta\left(t, t^{\prime}\right) \Sigma^{H F}(t)+\Sigma^{(2)}\left(t, t^{\prime}\right) \\
& \Sigma_{i j}^{H F}(t)=-i \sum_{k l} G_{k l}\left(t, t^{+}\right)\left(2 v_{i l k j}-v_{i l j k}\right) \\
& \Sigma_{i j}^{(2)}\left(t, t^{\prime}\right)=\sum_{k l m n p q} G_{k l}\left(t, t^{\prime}\right) G_{m n}\left(t, t^{\prime}\right) G_{p q}\left(t^{\prime}, t\right) v_{i q m k}\left(2 v_{l n p j}-v_{n l p j}\right)
\end{aligned}
$$

(Nils Erik Dahlen, RvL, Phys.Rev.Lett. 98, I53004 (2007))

The Kadanoff-Baym equations

$$
\begin{aligned}
i \partial_{t} G^{\lessgtr}\left(t ; t^{\prime}\right) & =h(t) G^{\lessgtr}\left(t ; t^{\prime}\right)+I^{\lessgtr}\left(t ; t^{\prime}\right) \quad \text { (+ adjoint) } \\
i \partial_{t} G^{\top}(t ; i \tau) & =h(t) G^{\top}(t ; i \tau)+I^{\rceil}(t ; i \tau) \\
-i \partial_{t} G^{\complement}(i \tau, t) & =G^{\lceil }(i \tau, t) h(t)+I^{\lceil }(i \tau, t)
\end{aligned}
$$

with the initial conditions

$$
\begin{array}{rll}
G^{<}(0,0)=i G^{M}\left(0^{-}\right) & , & G^{>}(0,0)=i G^{M}\left(0^{+}\right) \\
G^{\dagger}(t, i \tau)=i G^{M}(-i \tau) & , & G^{\lceil }(i \tau, t)=i G^{M}(i \tau)
\end{array}
$$

Splitting the equation of motion into components on different parts of the Keldysh contour

The collision integrals are

$$
\begin{aligned}
& I^{\lessgtr}\left(t, t^{\prime}\right)= \int_{0}^{\infty} d \bar{t}\left[\Sigma_{c}^{R}(t, \bar{t}) G^{\lessgtr}\left(\bar{t}, t^{\prime}\right)+\Sigma_{c}^{\lessgtr}(t, \bar{t}) G^{A}\left(\bar{t}, t^{\prime}\right)\right] \\
&+\frac{1}{i} \int_{0}^{-\beta} d \bar{\tau} \Sigma^{\rceil}(t, i \bar{\tau}) G^{\lceil }\left(i \bar{\tau}, t^{\prime}\right) \\
& I^{\rceil}\left(t, i \tau^{\prime}\right)= \int_{0}^{\infty} d \bar{t} \Sigma_{c}^{R}(t, \bar{t}) G^{\top}\left(\bar{t}, i \tau^{\prime}\right) \\
&+\int_{0}^{-\beta} d \bar{\tau} \Sigma^{\rceil}(t, i \bar{\tau}) G^{M}\left(i\left(\bar{\tau}-\tau^{\prime}\right)\right) \\
& \text { and }\left[I^{\Gamma}(i \tau, t)\right]^{\dagger}=I^{\top}(t, i \tau) .
\end{aligned}
$$

Time propagation of the Kadanoff-Baym equations

Solve equilibrium case on the imaginary axis

Carry out time-stepping in the double-time plane (possibly with external field applied)

(Nils Erik Dahlen, RvL, Phys.Rev.Lett. 98, I 53004 (2007), A.Stan, N.E.Dahlen, RvL,
J.Chem.Phys.I30, 224IOI (2009))

The hydrogen molecule in a laser field

Equilibrium (no field applied)

$$
\begin{aligned}
& v(\mathbf{r} t)=E(t) z \\
& E(t)=\theta\left(t-t_{0}\right) E_{0}
\end{aligned}
$$

On the time diagonal :

$$
n_{i}(t)=\left\langle\hat{a}_{i, H}^{\dagger}(t) \hat{a}_{i, H}(t)\right\rangle=\operatorname{Im} G_{i i}^{<}(t, t)
$$

$\operatorname{Im} G_{\sigma_{g} \sigma_{g}}^{<}\left(t_{1}, t_{2}\right) \quad$ Nonequilibrium (field applied)

$\operatorname{Im} G_{\sigma_{u} \sigma_{u}}^{<}\left(t_{1}, t_{2}\right)$

The quantum conduction problem

Model Hamiltonian

R

$$
\begin{aligned}
& \hat{H}_{C}(t)=\sum_{i j, \sigma} h_{i j}(t) \hat{d}_{i \sigma}^{\dagger} \hat{d}_{j \sigma}+\frac{1}{2} \sum_{\substack{i j k l \\
\sigma \sigma^{\prime}}}^{\mathrm{H}_{\mathrm{cL}}} v_{i j k l}^{\mathrm{H}_{\mathrm{cc}}} \hat{d}_{\mathrm{H}_{\mathrm{Rc}}}^{\dagger} \hat{d}_{j \sigma^{\prime}}^{\dagger} \hat{d}_{k \sigma^{\prime}} \hat{d}_{l \sigma} \\
& \hat{H}_{\alpha \mathrm{RB}}(t)=U_{\alpha}(t) \hat{N}_{\alpha}+\sum_{i j, \sigma} h_{i j}^{\alpha} \hat{c}_{i \sigma \alpha}^{\dagger} \hat{c}_{j \sigma \alpha} \\
& \hat{H}_{T}=\sum_{i j, \sigma \alpha} V_{i, j \alpha}\left[\hat{d}_{i \sigma}^{\dagger} \hat{c}_{j \sigma \alpha}+\hat{c}_{j \sigma \alpha}^{\dagger} \hat{d}_{i \sigma}\right]
\end{aligned}
$$

The embedding

The one-body part of the Hamiltonian is projected onto different regions

L

R

$\mathrm{H}_{\text {RR }}$
$\mathbf{H}=\left[\begin{array}{ccc}\mathbf{H}_{\mathrm{LL}} & \mathbf{H}_{\mathrm{LC}} & \mathbf{0} \\ \mathbf{H}_{\mathrm{CL}} & \mathbf{H}_{\mathrm{CC}} & \mathbf{H}_{\mathrm{CR}} \\ \mathbf{0} & \mathbf{H}_{\mathrm{RC}} & \mathbf{H}_{\mathrm{RR}}\end{array}\right]$

The Green function and the self-energy attain the form

$$
\mathcal{G}=\left[\begin{array}{lll}
\mathcal{G}_{\mathrm{LL}} & \mathcal{G}_{\mathrm{LC}} & \mathcal{G}_{\mathrm{LR}} \\
\mathcal{G}_{\mathrm{CL}} & \mathcal{G}_{\mathrm{CC}} & \mathcal{G}_{\mathrm{RC}} \\
\mathcal{G}_{\mathrm{RL}} & \mathcal{G}_{\mathrm{CR}} & \mathcal{G}_{\mathrm{RR}}
\end{array}\right] \quad \boldsymbol{\Sigma}^{\mathrm{MB}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \boldsymbol{\Sigma}_{\mathrm{CC}}^{\mathrm{MB}}\left[\mathcal{G}_{\mathrm{CC}}\right] & 0 \\
0 & 0 & 0
\end{array}\right]
$$

with equations of motion for the complete system

$$
\begin{aligned}
i \partial_{z} \mathcal{G}\left(z, z^{\prime}\right) & =\delta\left(z, z^{\prime}\right) \mathbf{1}+\mathbf{H}(z) \mathcal{G}\left(z, z^{\prime}\right) \\
& +\int d \bar{z} \boldsymbol{\Sigma}^{\mathrm{MB}}(z, \bar{z}) \mathcal{G}\left(\bar{z}, z^{\prime}\right) \\
-i \partial_{z^{\prime}} \mathcal{G}\left(z, z^{\prime}\right) & =\delta\left(z, z^{\prime}\right) \mathbf{1}+\mathcal{G}\left(z, z^{\prime}\right) \mathbf{H}\left(z^{\prime}\right) \\
& +\int d \bar{z} \mathcal{G}(z, \bar{z}) \boldsymbol{\Sigma}^{\mathrm{MB}}(\bar{z}, z)
\end{aligned}
$$

The projection on region CC gives

$$
\begin{aligned}
& \left\{i \partial_{z} \mathbf{1}-\mathbf{H}_{\mathrm{CC}}(z)\right\} \mathcal{G}_{\mathrm{CC}}\left(z, z^{\prime}\right)=\delta\left(z, z^{\prime}\right) \mathbf{1}+ \\
& \sum_{\alpha} \mathbf{H}_{\mathrm{C} \alpha} \mathcal{G}_{\alpha \mathrm{C}}\left(z, z^{\prime}\right)+\int d \bar{z} \boldsymbol{\Sigma}_{\mathrm{CC}}^{\mathrm{MB}}(z, \bar{z}) \mathcal{G}_{\mathrm{CC}}\left(\bar{z}, z^{\prime}\right)
\end{aligned}
$$

while the projection on region aC gives

$$
\left\{i \partial_{z} \mathbf{1}-\mathbf{H}_{\alpha \alpha}(z)\right\} \mathcal{G}_{\alpha \mathrm{C}}\left(z, z^{\prime}\right)=\mathbf{H}_{\alpha \mathrm{C}} \mathcal{G}_{\mathrm{CC}}\left(z, z^{\prime}\right)
$$

This can be solved to give

$$
\mathcal{G}_{\alpha \mathrm{C}}\left(z, z^{\prime}\right)=\int d \bar{z} \mathbf{g}_{\alpha \alpha}(z, \bar{z}) \mathbf{H}_{\alpha \mathrm{C}} \mathcal{G}_{\mathrm{CC}}\left(\bar{z}, z^{\prime}\right)
$$

where the biased but uncontacted lead Green function satisfies

$$
\left\{i \partial_{z} \mathbf{1}-\mathbf{H}_{\alpha \alpha}(z)\right\} \boldsymbol{g}_{\alpha \alpha}\left(z, z^{\prime}\right)=\delta\left(z, z^{\prime}\right) \mathbf{1}
$$

The equation of motion

The equation of motion projected on the central region has the form

$$
\begin{aligned}
& \left\{i \partial_{z} \mathbf{1}-\mathbf{H}_{\mathrm{CC}}(z)\right\} \mathcal{G}_{\mathrm{CC}}\left(z, z^{\prime}\right) \\
& =\delta\left(z, z^{\prime}\right) \mathbf{1}+\int d \bar{z}\left[\boldsymbol{\Sigma}_{\mathrm{CC}}^{\mathrm{MB}}+\boldsymbol{\Sigma}_{\mathrm{em}}\right](z, \bar{z}) \mathcal{G}_{\mathrm{CC}}\left(\bar{z}, z^{\prime}\right)
\end{aligned}
$$

where on top of the a many-body self-energy we also have an effective embedding self-energy

$$
\boldsymbol{\Sigma}_{\mathrm{em}}\left(z, z^{\prime}\right)=\sum_{\alpha} \boldsymbol{\Sigma}_{\mathrm{em}, \alpha}\left(z, z^{\prime}\right)=\sum_{\alpha} \mathbf{H}_{\mathrm{C} \alpha} \mathbf{g}_{\alpha \alpha}\left(z, z^{\prime}\right) \mathbf{H}_{\alpha \mathrm{C}}
$$

Calculating the current

The total current flowing out of reservoir α is given by :

$$
I_{\alpha}(t)=\frac{d N_{\alpha}(t)}{d t}=-2 \operatorname{Re}^{\operatorname{Tr}}\left[G_{C \alpha}^{<}(t, t) H_{\alpha C}\right]
$$

This gives after some manipulations:

$$
\begin{aligned}
I_{\alpha}(t)= & -2 \operatorname{Re} \operatorname{Tr}_{C} \int_{0}^{t} d t^{\prime}\left[G_{C C}^{<}\left(t, t^{\prime}\right) \Sigma_{\mathrm{em}, \alpha}^{\mathrm{A}}\left(t^{\prime}, t\right)+G_{C C}^{\mathrm{R}}\left(t, t^{\prime}\right) \Sigma_{\mathrm{em}, \alpha}^{<}\left(t, t^{\prime}\right)\right] \\
& -2 \operatorname{Re}^{\operatorname{Tr}} \operatorname{Tr}_{C} \int_{0}^{-i \beta} d t^{\prime}\left[G_{C C}^{\rceil}\left(t, t^{\prime}\right) \Sigma_{\mathrm{em}, \alpha}^{\lceil }\left(t^{\prime}, t\right)\right]
\end{aligned}
$$

Memory of initial correlations
Long time limit leads under some assumptions to Meir-Wingreen formula

The spectral function

The spectral function for a nonequilibrium system is defined as

$$
A\left(t, t^{\prime}\right)=\operatorname{Tr} \mathbf{A}\left(t, t^{\prime}\right) \quad \mathbf{A}_{i j}\left(t, t^{\prime}\right)=\left\langle\Psi_{0}\right|\left\{\hat{a}_{i, H}(t), \hat{a}_{j, H}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle
$$

In equilibrium the spectral function only depends on the difference of the time coordinates and can be Fourier transformed to give

$$
\begin{aligned}
A_{i i}(\omega) & \left.=\sum_{k}\left|\left\langle\Psi_{k}^{N+1}\right| \hat{a}_{i}^{\dagger}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega+E_{0}^{N}-E_{k}^{N+1}\right) \\
& \left.+\sum_{k}\left|\left\langle\Psi_{k}^{N-1}\right| \hat{a}_{i}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{0}^{N}+E_{k}^{N-1}\right)
\end{aligned}
$$

It shows peaks at electron addition and removal energies

In the nonequilibrium case it is convenient to Fourier transform with respect to the relative times:

$$
A(T, \omega)=\int \frac{d \omega}{2 \pi} A\left(T+\frac{t}{2}, T-\frac{t}{2}\right) e^{i \omega t}
$$

which can be calculated from the Green function as

$$
A(T, \omega)=-\operatorname{Im}_{\operatorname{Tr}}^{\mathrm{C}} \int \frac{d t}{2 \pi} e^{i \omega t}\left[\mathcal{G}_{\mathrm{CC}}^{>}-\mathcal{G}_{\mathrm{CC}}^{<}\right]\left(T+\frac{t}{2}, T-\frac{t}{2}\right)
$$

In the long time limit the spectral function becomes independent of T when a steady state is being reached

$$
\lim _{T \rightarrow \infty} A(T, \omega)=A(\omega)
$$

Density in the leads

If we define the inbedding self-energy as

$$
\boldsymbol{\Sigma}_{\mathrm{in}, \alpha}\left(z, z^{\prime}\right)=\mathbf{H}_{\alpha \mathrm{C}} \mathcal{G}_{\mathrm{CC}}\left(z, z^{\prime}\right) \mathbf{H}_{\mathrm{C} \alpha}
$$

Then the densities in the leads can be calculated from the equation

$$
\begin{aligned}
\mathcal{G}_{\alpha \alpha}\left(t_{-}, t_{+}\right) & =\boldsymbol{g}_{\alpha \alpha}\left(t_{-}, t_{+}\right)+ \\
& +\int d \bar{z} d \overline{\bar{z}} \boldsymbol{g}_{\alpha \alpha}\left(t_{-}, \bar{z}\right) \boldsymbol{\Sigma}_{\mathrm{in}, \alpha}(\bar{z}, \overline{\bar{z}}) \boldsymbol{g}_{\alpha \alpha}\left(\overline{\bar{z}}, t_{+}\right)
\end{aligned}
$$

Results: 4 atom chain connected to 9-row two-dimensional leads

Interaction

$$
\begin{aligned}
v_{i j k l} & =v_{i j} \delta_{i l} \delta_{j k} \\
v_{i j} & =\left\{\begin{array}{cc}
v_{i i} \quad i=j \\
\frac{v_{i i}}{2|i-j|} & i \neq j
\end{array}\right.
\end{aligned}
$$

Time-dependent bias

$$
U_{L}(t)=-U_{R}(t)=U \theta\left(t-t_{0}\right)
$$

Hoppings:

$$
\begin{gathered}
t^{\alpha}=-2 \\
t_{C}=-1 \\
V_{1,5 L}=V_{4,5 R}=-0.5
\end{gathered}
$$

The Green function

For the highest occupied molecular orbital the Green function matrix element has the following structure (imaginary part displayed)

$\mathcal{G}_{\mathrm{CC}, H H}^{<}\left(t_{1}, t_{2}\right)$
$\mathcal{G}_{\mathrm{CC}, H H}^{\rceil}(t, \tau)$

The transient currents

The spectral functions

Steady state regime
$\mathrm{U}=\mathrm{I} .2$ (dashed line)

The time-evolution of the spectral functions

$$
A(T, \omega)=-\operatorname{Im} \operatorname{Tr}_{\mathrm{C}} \int \frac{d t}{2 \pi} e^{i \omega t}\left[\mathcal{G}_{\mathrm{CC}}^{>}-\mathcal{G}_{\mathrm{CC}}^{<}\right]\left(T+\frac{t}{2}, T-\frac{t}{2}\right)
$$

Propagated without bias up to $\mathrm{t}=40$ after which the bias is switched on

Time-dependent buildup of the I-V curves

Hartree-Fock

second Born

electron correlations beyond mean-field wash out I-V features

Bias dependence of the spectral functions

The time-dependent dipole moment

The time-evolution of the screened interaction

$$
U=1.2
$$

$\operatorname{Im} \operatorname{Tr} W^{<}\left(t_{1}, t_{2}\right)$

Bare interaction reduced by a factor of two

Time-dependent lead densities and Friedel oscillations

The density pattern can be understood from study of the density response function of the 2D tight binding lattice

$$
\begin{aligned}
& \chi(\mathbf{q}, \omega)=\int \frac{d \mathbf{k}}{(2 \pi)^{2}} \frac{f\left(\epsilon_{\mathbf{k}}\right)-f\left(\epsilon_{\mathbf{k}+\mathbf{q}}\right)}{\omega-\epsilon_{\mathbf{k}}+\epsilon_{\mathbf{k}+\mathbf{q}}+i \eta} \\
&=2 \int \frac{d \mathbf{k}}{(2 \pi)^{2}} \frac{f\left(\epsilon_{\mathbf{k}}\right)\left(\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{k}+\mathbf{q}}\right)}{(\omega+i \eta)^{2}-\left(\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{k}+\mathbf{q}}\right)^{2}} \\
& \epsilon_{\mathbf{k}}=2 T\left(\cos k_{x}+\cos k_{y}\right)
\end{aligned}
$$

$\chi(\mathbf{q}=\alpha \mathbf{Q}, \omega=0) \quad$ with $\quad \mathbf{Q}=(\pi, \pi)$
is discontinuous at $\quad \alpha=1$ leading to a cross-shaped density pattern

TDDFT : The challenge of a correlation functional with memory

The time-dependent xc-potential that gives the same density as that of the Kadanoff-Baym scheme, is given by (Sham-Schlüter equation)
$\int d z^{\prime} \mathcal{G}_{s}\left(z, z^{\prime}\right) \mathcal{G}\left(z^{\prime}, z\right) \mathbf{v}_{\mathrm{xc}}\left(z^{\prime}\right)=\int d z^{\prime} d z^{\prime \prime} \mathcal{G}_{s}\left(z, z^{\prime}\right) \boldsymbol{\Sigma}[\mathcal{G}]\left(z^{\prime}, z^{\prime \prime}\right) \mathcal{G}\left(z^{\prime \prime}, z\right)$
This is not a closed equation unless we, for instance, make the substitution $\mathcal{G} \longrightarrow \mathcal{G}_{s}$

If this is done at Hartree-Fock level then we obtain the x-only TDOEP equations. The performance of this approach is likely to be close to TDHF.

What if the substitution is done at 2 B or GW level?
Topic of future investigation......

Conclusions

General conclusions

- An approach to the nonequilibrium quantum conduction problem is developed which is based on the solution of the Kadanoff-Baym equations for the nonequilibrium Green functions
- The scheme has build in conservations laws and effects of electron correlations can be explored by diagrammatic methods
- Macroscopic leads can be incorporated by means of embedding self-energies that are added on top of the self-energy terms that describe the electronic interactions
- Lead densities can be calculated from an inbedding self-energy

Conclusions for the 4 atom chain attached to 2D leads:

- Correlation effects beyond Hartree-Fock have a large influence on dynamics in quantum transport:
a) At moderate bias the HOMO-LUMO gap closes while in HF it remains fairly constant
b) The HOMO and LUMO resonances are rather sharp during the transient time and suddenly broaden when approaching the steady state. In HF they remain sharp.
c) In the correlated case the transients are more damped and die out earlier
d) Correlations beyond HF wash out features in I-V curves.
- For a 4-atom chain with long range interactions, screening effects are already considerable. The GW and 2B approximations for this case give very similar results
- All the oscillations in the TD dipole moment can be understood in terms of the level structure of the system.
Transient spectroscopy?

Thank you!

Comparison with exact solution TD Schrödinger equation

$$
U=I, w=1
$$

6 site Hubbard
(see also Marc Puig von Friesen, Claudio Verdozzi,
Carl-Olof Almbladh, cond-mat 0905.206I)

6 site long-range
Coulomb interaction

