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magnetic moment
from orbital current

+

... in atoms

!H = !B − 4π !M

!M = !Mspin + !Morbital

... in solids

magnetic moment
from spin

No theory forperiodic solids!



6

How can we calculate the orbital
magnetization in periodic solids

?



Why not through current J?
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Microscopic
Ill-defined:
Therefore, cannot define      as cell average of

M is not, even in
principle, a functional of the 
bulk current density  J(r). 

(Hirst, RMP 1997)

Just as:
P is not, even in principle, a 

functional of the bulk 
charge density !(r). 

!M

!M(!r) : ∇ × !M(!r) = !J(!r)
!M(!r) ⇒ !M(!r) + !M0 + ∇η

!M(!r)
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Why not through current J?
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Berry connection
Aα(!k) = i〈u"k|∂/∂kα|u"k〉

Berry curvature

Ω(!k) = ∇ × !A

Electric polarization

Chern number

Anomalous Hall
conductivity

C =
1
2π

∫

BZ
Ω("k) d2k =

1
2π

∮

BZ

"A("k) · d"k

Pα =
q
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∫
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σxy =
q2
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one-particle H, broken TR
B=0, or commensurate

ferromagnetic insulator
zero Chern numbers

spinless electrons
two dimensional
isolated occupied band

tight-binding model

1-particle states
labeled by k

Wannier
representable

for simplicity
of presentation

for tests



thermodynamic limit

Theory

11

Polarization Magnetization

finite samples
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eigenstates

loc. mol. orb.



thermodynamic limit

Theory

11

Polarization Magnetization

finite samples

= −e
∑

i

〈wi|!r|wi〉

!d = −e
∑

i

〈ψi|!r|ψi〉

bulk Wannier
functions |R>

!P =
!d

A
= −

e

A0
〈!0|!r|!0〉



thermodynamic limit

Theory

11

Polarization Magnetization

finite samples

= −e
∑

i

〈wi|!r|wi〉

!d = −e
∑

i

〈ψi|!r|ψi〉

= −
e

2c

∑

i

〈wi|!r × !v|wi〉

!m = −
e

2c

∑

i

〈ψi|!r × !v|ψi〉

circulation
operator

!P =
!d

A
= −

e

A0
〈!0|!r|!0〉



thermodynamic limit

Theory

11

Polarization Magnetization

finite samples

= −e
∑

i

〈wi|!r|wi〉

!d = −e
∑

i

〈ψi|!r|ψi〉

= −
e

2c

∑

i

〈wi|!r × !v|wi〉

!m = −
e

2c

∑

i

〈ψi|!r × !v|ψi〉

!MLC =
!m

A
= −

e

2cA0
〈!0|!r × !v|!0〉!P =

!d

A
= −

e

A0
〈!0|!r|!0〉



Theory

11

Polarization Magnetization
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A simple tight-binding model
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E = −∆

E = +∆
t2eiϕ
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Itinerant circulation
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r

!ws"#v"

r̄ × 〈ws|!v|ws〉

(IC) itinerant
circulation

bulk WF:  bulk band 
carries no net current

so <v>=0
so r x <v>=0

but what about
surface WF?
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Invariant under H !H+!E

Gauge invariant

Easy to discretize and implement

Final result
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Working in the Wannier representation, we derive an expression for the orbital magnetization of a
periodic insulator. The magnetization is shown to be comprised of two contributions, an obvious one
associated with the internal circulation of bulklike Wannier functions in the interior, and an unexpected
one arising from net currents carried by Wannier functions near the surface. Each contribution can be
expressed as a bulk property in terms of Bloch functions in a gauge-invariant way. Our expression is
verified by comparing numerical tight-binding calculations for finite and periodic samples.

DOI: 10.1103/PhysRevLett.95.137205 PACS numbers: 75.10.Lp, 73.20.At, 73.43.2f

Recent years have seen a surge of interest in issues of
charge and spin transport in magnetic materials and nano-
structures, notably the development of a theory of the
intrinsic anomalous Hall conductivity and some controver-
sies surrounding the spin-Hall effect [1]. In this context it is
quite surprising that the theory of orbital magnetization,
essential for any proper description of magnetism, has
remained in a primitive state. Linear-response methods
allow calculations of magnetization changes [2–5], but
not of the magnetization itself.

Hirst [6] has emphasized that a knowledge of the bulk
local current density J!r" is insufficient, even in principle,
to determine the macroscopic orbital magnetization M,
just as the density !!r" cannot be used to determine the
electric polarization P. Thus, the theory of M today is in a
condition very similar to that of P in the early 1990s, when
the problem of computing finite polarization changes was
solved by the introduction of the Berry-phase theory [7,8].
The essential difficulty, that the matrix elements of the
position operator r are not well defined in the Bloch
representation, could be overcome by reformulating the
problem in the Wannier representation. Because Wannier
functions (WFs) are exponentially localized in an insulator,
matrix elements of r between WFs are indeed well defined.

Here we show that it is possible to formulate a corre-
sponding theory of the orbital magnetization for an insu-
lator with broken time-reversal symmetry. The problem is
analogous, with the circulation operator r# v now being
ill defined in the Bloch representation. Working instead in
the Wannier representation, we write the orbital magneti-
zation as a gauge-invariant Brillouin-zone integral over
occupied Bloch functions. It contains two terms, the first
of which describes the internal circulation of bulklike WFs
[9]. The second is much more subtle, arising only from
surface WFs and reflecting the fact that the information
about surface currents needed to define the macroscopic
magnetization is actually contained in the bulk band struc-
ture. The resulting formula is consistent with a recent
semiclassical argument [10] based on an expression for

the magnetization of a wave packet [11] and can easily be
implemented in first-principles codes.

For our derivation, we restrict ourselves to the case of an
insulator described by a one-particle Hamiltonian with
broken time-reversal symmetry. While the restriction to
insulators is essential for the theory of polarization, we
suspect that it is less so here, so that future generalizations
to metals are not ruled out. We also require a vanishing
macroscopic magnetic field (or, more generally, an integer
number of flux quanta per unit cell) so that the Bloch wave
vector k remains a good quantum number. We have in
mind cases in which a staggered magnetic field averages to
zero over the unit cell, or in which the time-reversal break-
ing comes about through spin-orbit coupling to a back-
ground of ordered local moments [12–16]. For simplicity
we work with spinless electrons (the generalization to the
spin-unrestricted case being straightforward) and further-
more restrict ourselves to zero-Chern-number insulators
[12,13].

Let us consider a finite sample representing a fragment
of a larger crystalline system. We assume that the occupied
states can be represented in terms of well-localized ortho-
normal orbitals j"ii, which we will refer to as Wannier
functions. If we introduce the velocity operator as

v $ % i
@ &r; H' (1)

then the total magnetic moment of the finite system in-
volves the matrix elements h ijr# vj ii, where the j ii
are the occupied eigenstates of H. By invariance of the
trace, this can be written in terms of WFs as

m $ % e
2c

X
i
h"ijr# vj"ii; (2)

where %e is the electron charge. The magnetization M can
then be defined as the magnetic moment m per unit vol-
ume. For large but finite samples, all j"ii that are suffi-
ciently far from the surface become exponentially similar
to bulk WFs, which we will denote as jwii. For the electric
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Orbital magnetization in crystalline solids:
Multi-band insulators, Chern insulators, and metals

Davide Ceresoli,1 T. Thonhauser,2 David Vanderbilt,2 and R. Resta3

1International School for Advanced Studies (SISSA/ISAS) and DEMOCRITOS, via Beirut 2-4, 34014 Trieste, Italy
2Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

3Dipartimento di Fisica Teorica Università di Trieste and DEMOCRITOS, strada Costiera 11, 34014 Trieste, Italy

We derive a multi-band formulation of the orbital magnetization in a normal periodic insulator
(i.e., one in which the Chern invariant, or in 2d the Chern number, vanishes). Following the approach
used recently to develop the single-band formalism [T. Thonhauser, D. Ceresoli, D. Vanderbilt, and
R. Resta, Phys. Rev. Lett. 95, 137205 (2005)], we work in the Wannier representation and find that
the magnetization is comprised of two contributions, an obvious one associated with the internal
circulation of bulk-like Wannier functions in the interior and an unexpected one arising from net
currents carried by Wannier functions near the surface. Unlike the single-band case, where each
of these contributions is separately gauge-invariant, in the multi-band formulation only the sum of
both terms is gauge-invariant. Our final expression for the orbital magnetization can be rewritten
as a bulk property in terms of Bloch functions, making it simple to implement in modern code
packages. The reciprocal-space expression is evaluated for 2d model systems and the results are
verified by comparing to the magnetization computed for finite samples cut from the bulk. Finally,
while our formal proof is limited to normal insulators, we also present a heuristic extension to Chern
insulators (having nonzero Chern invariant) and to metals. The validity of this extension is again
tested by comparing to the magnetization of finite samples cut from the bulk for 2d model systems.
We find excellent agreement, thus providing strong empirical evidence in favor of the validity of the
heuristic formula.

PACS numbers: 75.10.-b, 75.10.Lp, 73.20.At, 73.43.-f

I. INTRODUCTION

During the last decade, charge and spin transport phe-
nomena in magnetic materials and nanostructures have
attracted much interest due to their important role for
spintronic devices.1 An adequate description of mag-
netism in these materials, however, should not only in-
clude the spin contribution, but also should account
for effects originating in the orbital magnetization. In
light of this, it is surprising that the theory of or-
bital magnetization has long remained underdeveloped.
Earlier attempts to develop such a theory used linear-
response methods, which allow calculations of magneti-
zation changes,2–5 but not of the magnetization itself.

Just recently, a new approach using Wannier functions
(WFs) has been proposed,6,7 which nicely parallels the
analogous case of the electric polarization. The primary
difficulty in both cases is that the position operator r is
not well-defined in the Bloch representation. Since WFs
are exponentially localized in an insulator, this difficulty
disappears if the problem is reformulated in the Wannier
representation. For the polarization, this approach lead
to the development of the modern theory of polarization
in the early 1990s.8,9 Similarly, in the case of the orbital
magnetization, where the circulation operator r × v is
ill-defined in the Bloch representation, the Wannier rep-
resentation was used to derive a theory for the orbital
magnetization of periodic insulators.7

While the formalism developed in Ref. 7 lays a firm
foundation for the orbital magnetization, its application
is limited to certain systems, such as single-band mod-

els and insulators. In this paper we expand the appli-
cability to a much wider class of systems by deriving a
corresponding multi-band formalism, essential for most
“real” materials. This extension is nontrivial and the
corresponding proof of gauge invariance is much more
complex than for the single-band case. Initially, we shall
restrict our attention to the case of an insulator with zero-
Chern invariant. Later, however, we will loosen these
constraints and give heuristic arguments for an exten-
sion of our formalism to metals and Chern insulators, i.e.
systems with a non-zero Chern invariant. These exten-
sions are important first steps toward a complete theory
of orbital magnetization.

Before proceeding, we emphasize that the present work
only addresses the question of how to compute the orbital
magnetization for a given independent-particle Hamil-
tonian. Many interesting questions remain concern-
ing which flavor of density-functional theory (DFT) or
which exchange-correlation (XC) functional might give
the most accurate orbital magnetization. While exact
Kohn-Sham (KS) density (or spin-density) functional
theory is guaranteed to yield the correct charge (or spin)
density,10 there is no reason to expect it to yield the
correct orbital currents. The orbital magnetization, be-
ing defined in terms of surface currents, is not guar-
anteed to be correct either. A prescription that seems
more suited to the present situation is that of Vignale
and Rasolt,11 in which the spin-labeled density and cur-
rent {nσ(r), jσ(r)} are connected to corresponding scalar
and vector potentials {Vσ(r), Aσ(r)}. However, it is an
open question whether an approximate Vignale-Rasolt

PRL 95, 137205

(2005)

PRB 74, 024408

(2006)
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Metal e Expt. [22] FLAPW [5] This method

LDA PBE LDA PBE

bcc-Fe [001] 0.081 0.048 0.045 0.0640 0.0658

bcc-Fe [111] − − − 0.0633 0.0660

fcc-Co [111] 0.120 0.076 0.073 0.0741 0.0756

fcc-Co [001] − − − 0.0642 0.0660

hcp-Co [001] 0.133 − − 0.0924 0.0957

hcp-Co [100] − − − 0.0837 0.0867

fcc-Ni [111] 0.053 0.049 0.050 0.0545 0.0519

fcc-Ni [001] − − − 0.0533 0.0556

TABLE III: Orbital magnetization M(e) in µB per atom of
ferromagnetic metals parallel to the spin, for different spin
orientations e. Experimentally, the easy axis for Fe, fcc-Co,
hcp-Co and Ni are, respectively, [001], [111], [001] and [111].
Tab. II in the auxiliary material show the contributions to M

according to Eq. (9).

mesh yields converged results. Ni and Co have a similar
convergence behavior.

Tab. III reports our results for the orbital magnetiza-
tion of the three metals Fe, Co and Ni, together with
experimental values and a recent calculation performed
by FLAPW [5]. Taking into account the contribution of
the interstitial regions neglected so far in the literature
(as in [5, 6]), we obtain improved values for the ferro-
magnetic metals already at the GGA-level. In order to
compare directly to FLAPW calculations, we have evalu-
ated (α/2) 〈L〉 only inside atomic spheres, and our results
agree very well with FLAPW calculations (see auxiliary
Tab. III [19]). The PBE functional yields larger values
for the orbital magnetization with respect to the LDA
functional. The agreement with the experimental val-
ues, along the easy axis, is very good for Ni, while for Fe
and Co the orbital magnetization is underestimated only
by 20–25%. This result indicates the importance of the
contributions from the interstitial regions when bench-
marking and/or developing improved DFT functionals
for orbital magnetism.

In conclusion, we have shown how a recently devel-
oped formula for the orbital magnetization can be ap-
plied in an ab-initio pseudopotential scheme whereby the
spin-orbit coupling enters explicitly the self-consistent cy-
cle. In comparison with linear response methods, our ap-
proach allows an improved calculation of the electronic
g-tensor of paramagnetic systems containing heavy ele-
ments or with large deviations of the g-tensor from the
free electron value. The latter situation is encountered
in many paramagnetic centers in solids, such as those ex-
hibiting a Jahn-Teller distortion and/or containing tran-
sition metal impurities. In addition, our method provides
improved orbital magnetizations with respect to the pre-
existing approaches that neglect the contributions of the
interstitial regions. This has been shown for the highly

ordered ferromagnets where the orbital contribution is
partially quenched by the crystal field. The presented
approach is perfectly suited to describe also the ferro-
magnetism of nanostructures where the orbital quench
is weaker and the orbital part of the magnetic moments
becomes more dominant.

U. G. acknowledges financial support by the DFG
(Grant No. GE 1260/3-1) and by the french CNRS.
D. C. acknowledges partial support from ENI. Calcula-
tions were performed at the IDRIS, Paris (Grant No.
061202) and at CINECA, Bologna (Grant Supercalcolo
589046187069).
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for periodic crystals in a simple way 
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σs,αβ = −
∂Bind

s,α

∂Bext
β

!Bind
s = − ↔

σ s · !Bext



NMR and Orbital Magnetization
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Bs,α = Bext
α + Bind

s,α

δαβ − σs,αβ = ∂Bs,α/∂Bext
β

Bs,α = −∂E/∂ms,α

!ms

!Bs

E = −!ms · !Bs



NMR and Orbital Magnetization
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Bs,α = Bext
α + Bind

s,α

δαβ − σs,αβ = −
∂

∂Bβ

∂E

∂ms,α
= −

∂

∂ms,α

∂E

∂Bβ

= Ω
∂Mβ

∂ms,α
!B ext = 0



Reminder: Born eff. Charges
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force Fs in direction! 
on site rs by E in

direction "

"component of P induced
by displacement of s

in direction!

Z∗
s,αβ = −

∂

∂Eβ

∂E

∂rs,α
= −

∂

∂rs,α

∂E

∂Eβ
= Ω

∂Pβ

∂rs,α

Z∗
αβ

!E = 0



In Practice ...
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H =
(
!p +

e

c
!A(!r)

)2
+ V (!r)

!̃A( !G) = −
4πi

Ω
!ms × !G

G2
e−i !G·!rs

∇ · !A = 0transverse gauge

σs,αβ = δαβ − Ω
∂Mβ

∂ms,α
≈ δαβ − Ω

∆Mβ

∆ms,α



How well does it work?
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molecules solids

T. Thonhauser et al., J. Chem. Phys. 131, 101101 (2009).



Outline
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First-principles
theory of NMR

Orbital 
magnetization



NMR of bulk water
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64 water molecule
unitcell (192 atoms)

current work: 5.94 ppm
experiment: 5.84 ppm

current work: 2.4 ppm
experiment: 2.4 ppm

Average

SD

-202468101214
hydrogen shift  [ppm]
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