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• Motivation: LDA calculations using Kohn-Sham approach are highly 
effective, but fails for systems with strong electron correlations

• Kohn-Sham approach introduces kinetic energy functional by comparing with 
a non-interacting electron system

• We introduce new kinetic energy functional using a new reference interacting
electron system obeying the Gutzwiller approximation

• Resulting new density functional yields self-consistent one-particle 
Schroedinger equations that can be solved analogous to LDA

• Our scheme includes additional variational degrees of freedom corresponding 
to occupation of local electron configurations first principles parameter-
free DFT theory 

Gutzwiller density functional theory
K. M. Ho, J. Schmalian, C. Z. Wang, PRB 77, 073101 (2008)



Other methods

• Dynamical mean field theory
• LDA + U
• LDA + Gutzwiller

• Involve parameters U etc which has to be 
adjusted or calculated from separate LDA 
calculations; not clear what is the proper 
value of these parameters



Background
To solve many-electron systems in quantum mechanics
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Three main approaches:
• Hartree-Fock method and its derivatives (quantum chemistry)
• Density functional theory (computational physics)
• Model Hamiltonian approach (many body physics)



Kohn-Sham DFT within LDA

• Hohenberg-Kohn theorem: the ground state energy of an 
electron system is a functional of the electron density 

• Kohn-Sham LDA (local density approx.) uses a non-
interacting electron system as reference
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Kohn-Sham DFT
Hohenberg-Kohn theorem:
The ground state energy of a many-electron system is a functional of the 
electron density

Kohn-Sham approach:
Kinetic energy functional is expressed as the sum of kinetic energy of 
fictitious non-interacting electrons which keeps the same density as the 
real system



Key to new approach

• Instead of just getting a better exchange-
correlation functional, work on getting a 
better kinetic energy functional by using a 
better reference system



New density functional

• Designate a subset L of orbitals as representing localized electrons

• Replace non-interacting electron reference system with an interacting 
Gutzwiller G projects out chosen local electronic 
configurations and suppress their amplitudes.

• Choice of Gutzwiller approach because

1. Gutzwiller approach interpolates well between strong correlation and weak 
correlation regimes

2. Analogy to coupled-cluster method in quantum chemistry: Expectation 
values can still be written in terms of one set of one particle wavefunctions
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Gutzwiller approximation
exact in the limit of high orbital degeneracy
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In the Gutzwiller approximation, the expectation of any one-particle operator 
acting on |ΨG>, can be related to a corresponding renormalized operator acting 
on the underlying uncorrelated Hartree-like wavefunction |Ψ0>, such that
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{φiα} is a local orbital basis for the system, a subset L of which represents 
localized electrons in the system and Σ’ indicates summation with the self term 
iα = jβ omitted. z = 1 for orbitals not in L, For localized orbitals in L, z is a function 
of the probabilities of various local electron configurations at each site i.



New exchange-correlation functional
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UΓ is the Slater integral representing the Coulomb repulsion between localized 
orbitals on the same site in the configuration Γ. p is the probability of 
occurrence of the local configuration Γ at the site i.

We subtract off the mean field localized-localized electron Coulomb repulsion 
so that there is no double counting of the electron-electron interactions in our 
Hamiltonian.

For the delocalized electrons (ρ-ρl) we keep the Kohn-Sham treatment so our 
theory reduces to the Kohn-Sham theory when ρl =0.

When all electrons are localized reduces to the multiband Hubbard hamiltonian



Beyond Hubbard and Gutzwiller
• Gutzwiller approximation applied strictly speaking 

to Hubbard hamiltonian with diagonal on-site term
• To go beyond this limitation, we divide orbitals

into localized and delocalized part
• Solve on-site problem in localized subspace 

exactly
• Resulting hamiltonian can be mapped onto 

Hubbard hamiltonian (U E)
• Adopt Gutzwiller approx only for interactions 

between localized subspace and delocalized 
subspace



Choice of reference system
• Let                            where {    } is a mutually 

orthogonal local orbital basis for the system, a 
subset L of which represents localized orbitals at 
the various sites in the system. 

• We choose our simplified interacting electron 
reference system to be represented by the following 
Hamiltonian:

,

ˆ ˆ( ) ( )i i
i

r r cα α
α

ψ φ=∑v v

iαφ

s s sH T V U= + +
) ) ) )



Reference Hamiltonian
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For ,  we choose the projection of the two-particle Coulomb repulsion 
onto the localized orbital subspace,  including only on-site terms.
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The remaining part of the two-body Coulomb repulsion term is 
assumed to be represented in a mean-field fashion in
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Exact treatment for on-site Hamiltonian

• Treat on-site correlations between localized 
orbitals exactly by projecting Hs onto the localized 
subspace at each site.

• Exactly diagonalize the on-site Hamiltonian

• This includes all relevant on-site interactions: 
spin-orbit, crystal field, magnetic exchange, 
Hund’s rule coupling etc.
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Hamiltonian is now in Hubbard form 
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nd delocalized subspaces are mediated
only by one-particle operators tractable by Gutzwiller approximation 
following Buenemann et al (1998, 2007)



Self-consistent solution of Hamiltonian
• Taking functional derivatives wrt the one particle wavefunctions in the underlying 

Hartree wavefunction, we can get a set of self-consistent one particle equations 

analogous to Kohn-Sham theory.
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the first term is the Gutzwiller-renormalized operator of the effective mean-field 
potential with the localized-localized electron-interaction contributions subtracted out 

Piα are projection operators a specific localized orbital and Pl projects on the whole 
localized subspace L. 

The second term adds back the localized-localized electron contribution to the 
effective potential (subtracted from the first term) according to the Gutzwiller
approximation
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Additional variational degrees of freedom in the new 
theory: pi(Γ)

• Derivatives wrt new degrees of freedom lead to auxillary self-

consistent criteria given by the set of equations:
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This yields additional channels for screening the Coulomb repulsion from
localized electrons via electronic correlations instead of the usual deformation
of charge in usual LDA approach. 



Application (Ce)

Ce exhibits an isostructural γ → α phase transformation with a volume 
change of 17%.
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Preliminary results: Ce

a0 (A)    B (GPa) 
LDA     4.52      57.4 
G-DFT 4.88      34.7 
Expt.     4.83      27.0 

Gutzwiller-LDA shows better 
agreement with experiment

Y-X Yao, C-Z Wang, J Schmalian, and K-M Ho



Critique

• Results may be sensitive to choice of local basis    
Need to optimize local basis during self-

consistency (Work in progress)



Application (Ce)

Simple choice: truncated free f-wavefunction as our local orbital



Summary
• Developed a new density functional incorporating 

correlated electronic effects into the kinetic energy via 
the Gutzwiller approximation 

• First principles formulation: all Coulomb integrals 
determined self-consistently, no adjustable parameters

• A preliminary Fortran90 code has been developed with 
an interface to VASP

• Preliminary application to FCC Ce.



Thank you
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