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Bacterial signaling: TwoBacterial signaling: Two--component systemscomponent systems

• Responsible for most signal transduction in bacteria.
• E. coli: aerobic/anaerobic switch, chemotaxis
• B. subtilis: sporulation
• C. crescentus: cell-cycle/differentiation.

• Over 8,500 two-component system genes  in 399 sequenced bacterial  genomes.



Advantages as model system for predictingAdvantages as model system for predicting
proteinprotein--protein interactionsprotein interactions

• Two-component systems can be easily detected using hidden Markov
models of the kinase and receiver domains.

• Enough homology to reproduce reliable multiple alignments:
specificity of interaction likely lies in details of amino acids at surface.

• Large number of examples available (good statistics).
• Training sets: For about 50% we know which kinase interacts with 

with receiver because they lie in a common operon.



Extracting twoExtracting two--component system proteinscomponent system proteins

• Receivers: All HMMer hits to Pfam profile Response_reg.
• Kinases: All HMMer hits to the Pfam profiles:

• HisKA, H2, H3, His_kinase, HWE_HK, HATPase_c, HPT 



Global statistics `signaling networksGlobal statistics `signaling networks’’ in bacteriain bacteria
Total number of two-comp. proteins Total number of orphans

Fraction of all two-comp. that are orphans Fraction of receivers among orphans

5.46/ne−

23/ne−



Multiple AlignmentsMultiple Alignments

• Aligned all receivers together. Separate alignment for each kinase domain architecture.
• Produced multiple alignments by aligning to the Pfam profiles.
• Produced independent alignments with ProbCons.
• Keep only positions with greater than 80% agreement by the two methods and less
than 50% gaps.

• Gives aligments with absolute reference positions for all kinase and receiver sequences. 

Receiver domain: 115.
HisKA: 64, H3: 66, Hiskin: 80, Hpt: 84, SH: 66, LH: 84, Chemotaxis: 101, HWE: 83. 

Final number of positions used:



Classifying receiversClassifying receivers
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• For each class c, each position i and each amino acid α estimate the weight
matrix of probabilities to obtain letter α at position i of a receiver in class c
from the cognate kinase/receiver pairs.

Some technical details:
• To correct for phylogenetic sampling biases we single-link cognates  into 

clusters of similarity >= 90% and give a weight of 1 to each cluster.
• λ is set to ½ (Prior uniform in Fisher-information).
• Gaps are treated as 21st amino acid.
• To get cognates we consider genes separated by <= 50 bp on same strand in

same operon and take only cognates if there is only 1 kinase and 1 receiver in
the operon.

• We use a uniform prior P(c).
• We take out the receiver and all members of its cluster from the counts in the WM
when scoring a given receiver.
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Weight matrix: Probability receiver given class: Posterior class given receiver:



Results Classifying receiversResults Classifying receivers

Overall 94% of cognate receivers are classified correctly



Interacting amino acidsInteracting amino acids
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Joint probability of observing the joint sequence for an interacting
kinase/receiver pair.

Amino acid sequence of a kinase.

Amino acid sequence of a receiver.

We will factor joint distribution into conditional probabilities of pairs of positions.
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Probability of the data given Probability of the data given 
a dependence tree topologya dependence tree topology
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Parametrization of the conditional probabilities.

Number of times amino acid combination α,β occurs at positions i,j in the data.

Likelihood

Prior

Likelihood of the 
dependence tree



Probability given dependence tree topologyProbability given dependence tree topology
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Marginal and edge probalities:

Final expression:
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Maximal Likelihood dependence treeMaximal Likelihood dependence tree
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Chow-Liu algorithm: Start with a complete graph with weights        on edges (i,j). 
One can find the maximal spanning tree of this graph by a simple greedy procedure.

ijR

• Use dataset D of all cognate pairs to determine best dependence tree.
• For each genome, remove all its cognate pairs from the data-set, and remove also all

single-linkage clusters of cognates with >= 90% amino acid identity.
• `Freeze’ all other cognate kinase/receiver pairs (training set).
• Use Monte-Carlo to search over all assignments of kinase/receiver pairs for the genome
under study. 

• Probability of assignment is probability of joint data (frozen pairs + assignment). 

Test: predicting interaction partners for cognate pairs.



Predicting Cognate interacting pairsPredicting Cognate interacting pairs
Kinases Receivers

K1 R1
K2 R2

Kn Rn

K1 R1
K2 R2

Km Rm

K1 R1

fD

Genome 1

Genome 2

More
genomes

Genome being sampled:

K1 R1

K2 R2

K3 R3

K4 R4

aD

Likelihood assignment:

),|,( * aDDP af π
Monte-Carlo sampling according to 
likelihood:

At every time-point pick 2 kinases
at random and consider flipping the
receivers assigned to them.

“frozen
Data”



Predicting Cognate interacting pairsPredicting Cognate interacting pairs

Fraction of
predictions
that are true
cognate pairs.

Remove all
with >80%
homology from
training set.

Remove all
with >90%
homology from
training set.



Phylogeny signal vs. physical interactionsPhylogeny signal vs. physical interactions

• Do positions in kinase receiver just look correlated because there are orthologous
interacting pairs are evolutionarily related?

• Make a new data-set of `false interacting pairs’ that have the exact same evolutionary
relationships: Flip assignment of pairs for orthologous groups.

True interacting pairs
K1 R1
K2 R2

K1’ R1’
K2’ R2’

K1’’ R1’’
K2’’ R2’’

Genome 1

Genome 2

Genome 3

K1 R2
K2 R1

K1’ R2’
K2’ R1’

K1’’ R2’’
K2’’ R1’’

Genome 1

Genome 2

Genome 3

False interacting pairs



Number of pairs of positions with `interaction score’
over a given cut-off in true and false pairs.

Phylogeny signal vs. physical interactionsPhylogeny signal vs. physical interactions
( )ijRlog



Predicting orphan interactionsPredicting orphan interactions

• Use entire set of cognates as a `frozen’ training set.

• Run assignments of all orphans from all genomes at the same time.

• Run on all classes of kinases at the same time.

• Since the number of kinases and receivers are not the same, some kinases or
receivers will not be hooked up to any partner.

• Each receiver can belong to each of the kinase classes (sampled over).

• Unhooked kinases/receivers are scored according to the simple WM model:
one WM for each class of receiver and one for each class of kinase.

• Move-set includes changes in receiver class, and flips of partner (where one of the
two members may not have a partner).

Extensions for doing orphan predictions:



Results predicting orphan interactionsResults predicting orphan interactions
Focused on Caulobacter crescentus for which most results are available.
C. crescentus has 11 orphan HisKA kinases and 19 orphan receivers. 

Top predictions for hisKA kinases with known interactions.
(of 319 possible interactions). List was cut to have at least 
1 prediction for all kinases for which an interaction is known.

Experimentally confirmed

Interaction not observed
experimentally when tested.

Interaction observed in
yeast two-hybrid screen.

No data available either
for or against.

Probability to get this match by
chance: 13104.1 −∗=p



Results predicting orphan interactionsResults predicting orphan interactions

One hisKA orphan interaction known in Helicobacter pylori.

Known interaction is predicted with posterior 1.
There are 7 orphan receivers in Helicobacter pylori.



Beyond maximumBeyond maximum--likelihood spanning tree:likelihood spanning tree:
summing over spanning treessumming over spanning trees

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+Γ

Γ
= ∏∏

≠ri
ii

i
i RM

n
DP )(2

2

)21(
)21()|( πλ

λπ

We would like to sum over all possible trees:

Probability of the data given a spanning dependence tree:
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Example: for 3 positions we would sum over the three spanning trees:
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Generalization of the matrixGeneralization of the matrix--tree theoremtree theorem

Define Laplacian matrix: ∑ −=
k

ijikijij RRL δ

=L~ Matrix L with a single row and column removed

Theorem:
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One catch: R has some components that are extremely large and others that are extremely
small. We so far have found no numerically stable way of calculating the determinant, only
uncontrolled approximations.

Test:
• Take all cognate kinases and receivers and run Monte-Carlo assigning all genomes at the

same time. 
• Score the combination of assignments from all genomes using the determinant.
• Note: No training set!



Results predicting cognate interactions Results predicting cognate interactions ab initioab initio

Caveat: We cannot show that the Monte-Carlo has converged (and believe it has in fact not).
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