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Inferring protein-protein interactions £ */5.+
from amino acid sequences:
Application to two-component systems
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Bacterial signaling: Two-component systems
Stimulus
H Histidine
PEUANTON kinase Cell membrane
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* E. coli; aerobic/anaerobic switch, chemotaxis
* B. subtilis: sporulation
« C. crescentus: cell-cycle/differentiation.
* Over 8,500 two-component system genes in 399 sequenced bacterial genomes.
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Advantages as model system for predicting -
protein-protein interactions

* Two-component systems can be easily detected using hidden Markov
models of the kinase and receiver domains.

« Enough homology to reproduce reliable multiple alignments:
specificity of interaction likely lies in details of amino acids at surface.

» Large number of examples available (good statistics).

 Training sets: For about 50% we know which kinase interacts with
with receiver because they lie in a common operon.

cognate pairs orphan kinases and regulators
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Extracting two-component system proteins

« Receivers: All HMMer hits to Pfam profile Response_ reg.

« Kinases: All HMMer hits to the Pfam profiles:
HiIsKA, H2, H3, His kinase, HWE HK, HATPase c, HPT

Name Architecture no.cognates | no.orphans
HisKA HisKA, HATPase—c 3388 2158
H3 H3, HATPase_c 636 183
His_kinase HATPase_c 245 23
Long hybrid | HisKA, HATPase_c, RR, (RR), Hpt 132 286
Short hybrid | HisKA, HATPasec, RR, (RR) 126 985
Chemotaxis | Hpt, HATPase_c 89 77
Hpt Hpt 37 192
HWE HWE or H2, HATPase_c 34 162
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Table 1: Pfam domain combinations of the most abundant kinase architectures
and the numbers of their occurence in both cognates and orphans. Both the

short and long hybrid architecture can contain one or two receiver domains.
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Global statistics signaling networks’ in bacteria

Total number of two-comp. proteins Total number of orphans
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Multiple Alignments
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kinase domain aligment receiver domain alignment

» Aligned all receivers together. Separate alignment for each kinase domain architecture.
* Produced multiple alignments by aligning to the Pfam profiles.
* Produced independent alignments with ProbCons.
* Keep only positions with greater than 80% agreement by the two methods and less
than 50% gaps.
* Gives aligments with absolute reference positions for all kinase and receiver sequences.

Final number of positions used:
Receiver domain: 115.
HisKA: 64, H3: 66, Hiskin: 80, Hpt: 84, SH: 66, LH: 84, Chemotaxis: 101, HWE: 83.



fFowiln

BIOZENTRUM

Py, Rt e

-3 A

s !
o .
o — 8
| i L

..'.",' i"‘l‘ vy
W L

Classifying receivers

» For each class ¢, each position j and each amino acid a estimate the weight
matrix of probabilities to obtain letter a at position i/ of a receiver in class ¢
from the cognate kinase/receiver pairs.

Weight matrix: Probability receiver given class: Posterior class given receiver:
Ny +4 5 - P(RIc)P(c)
W = —4 P(RIc)=]||wW:: P(c|R)=
al nc + 2:' i H R|I ( | )

> P(RIC)P(C)
Some technical details: c

» To correct for phylogenetic sampling biases we single-link cognates into
clusters of similarity >= 90% and give a weight of 1 to each cluster.

* Ais set to Y2 (Prior uniform in Fisher-information).

» Gaps are treated as 21st amino acid.

» To get cognates we consider genes separated by <= 50 bp on same strand in
same operon and take only cognates if there is only 1 kinase and 1 receiver in
the operon.

« We use a uniform prior P(c).

» We take out the receiver and all members of its cluster from the counts in the WM

when scoring a given receiver.
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Results Classifying receivers
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0.7- - [ JLH
0.6- | |LSH
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D_ |

HisKA H3 Hiskin LH SH Chem Hpt Hwe

Overall 94% of cognate receivers are classified correctly
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Interacting amino acids

K = (kl, k2 EREN kn) Amino acid sequence of a kinase.
F=(r,r,--,r.)  Amino acid sequence of a receiver.

(k, f) =S Joint sequence of interacting kinase/receiver pair.

P(k, f’) — p(§) innt probapility of.observing the joint sequence for an interacting
kinase/receiver pair.

We will factor joint distribution into conditional probabilities of pairs of positions.
P(r, [k;)
R2

K2

P(3) = P(sr)H P(s;|s,q) Example: )

s, = Amino acid at root. K1

7z(1) = position that amino
() P o B Kinase positions
acid at position i depends on. BB Receiver positions R1

P(r; | 1,)

K3 P(r1 | ks) R3

P(k,)
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Probability of the data given
a dependence tree topology
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P(Si | S j) = psisj Parametrization of the conditional probabilities.

ngﬂ Number of times amino acid combination a, occurs at positions i,j in the data.

P(D|p,7)=

P(p| )

P(D|7)=[P(D|p,7)P(p

a

[1(e:

a

[T(e:)"
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Likelihood

Prior

Likelihood of the
dependence tree
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Probability given dependence tree topology ~

| P(Di|7z,Dj):1;[ r(zu)jg(’;‘f}?) dpl, |=

i ) _
'(214) F(naﬂ+/1) _

g_r(n;+2u)1:[ (1) = MR,

Marginal and edge probalities:

_Hr(n +214) _y r'(nl, + A)r(21A)r(214)
- reia) " LT, +21)T(n) +214)

(94

Final expression:

_ T(21*2)
o19- 2 (11w 15,

I1#£r
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Maximal Likelihood dependence tree =

. T(21° 1)
P(D|x)= T(n+ 212/1) {H Mi:||:H Ri;z(i):|

i i=r
7T Dependence tree that maximizes P(D | 72')

Chow-Liu algorithm: Start with a complete graph with weights Rij on edges (i,)).
One can find the maximal spanning tree of this graph by a simple greedy procedure.

Test: predicting interaction partners for cognate pairs.

« Use dataset D of all cognate pairs to determine best dependence tree.

* For each genome, remove all its cognate pairs from the data-set, and remove also all
single-linkage clusters of cognates with >= 90% amino acid identity.

* Freeze' all other cognate kinase/receiver pairs (training set).

* Use Monte-Carlo to search over all assignments of kinase/receiver pairs for the genome
under study.

* Probability of assignment is probability of joint data (frozen pairs + assignment).



i)

BIOZENTRUM

: =,
i -
g :
5 [
5 e
& ’ Ny, A
] -
| T4 R
AP > >
il_’: 3 v, 3 Foprs]

Predicting Cognate interacting pairs
Kinases Receivers
/ <1 { ~ Genome being sampled:
s
k2 — R i
: > Genome 1
K2
_ D, <
“frozen Kn { D K3
Data”
~
ki — R | L ka
D, < K2 —R2 > Likelihood assignment:
: Genome 2
_ P(D,,D, | 7.,a)
Km {/ Monte-Carlo sampling according to
) likelihood:
K1
: { More At every time-point pick 2 kinases
genomes at random and consider flipping the
\ : : receivers assigned to them.
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Predicting Cognate interacting pairs

predictions
that are true
cognate pairs. 3 0.5

2 0.4

0.3

0.2

0.1

1
0.9+
0.8
Fraction of 07"

£0.6

Remove all

e with>90%

«M ._ .R__:‘:\EN' h0m0|0gy from
N s training set.
\:\H;__:\:& o SRR “Remove all
“with >80%
homology from
N, training set.
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Phylogeny signal vs. physical interactions "

* Do positions in kinase receiver just look correlated because there are orthologous
interacting pairs are evolutionarily related?

» Make a new data-set of ‘false interacting pairs’ that have the exact same evolutionary
relationships: Flip assignment of pairs for orthologous groups.

True interacting pairs False interacting pairs

Genome 1

- Genome 1
[ R2 |

> Genome 2 > Genome 2

N
J

r Genome 3

r Genome 3
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Phylogeny signal vs. physical interactions

Number of pairs of positions with “interaction score’ og(Rij )
over a given cut-off in true and false pairs.
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Predicting orphan interactions

Extensions for doing orphan predictions:

« Use entire set of cognates as a frozen' training set.
* Run assignments of all orphans from all genomes at the same time.
* Run on all classes of kinases at the same time.

* Since the number of kinases and receivers are not the same, some kinases or
receivers will not be hooked up to any partner.

* Each receiver can belong to each of the kinase classes (sampled over).

 Unhooked kinases/receivers are scored according to the simple WM model:
one WM for each class of receiver and one for each class of kinase.

 Move-set includes changes in receiver class, and flips of partner (where one of the
two members may not have a partner).
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Results predicting orphan interactions =

Focused on Caulobacter crescentus for which most results are available.
C. crescentus has 11 orphan HiskA kinases and 19 orphan receivers.

kinase regulator | posterior | std exp evidence
CC0248 | CC0247 1.0000 0.0000 | putative cognate pair . ]
CC0289 | CC0294 0.9931 0.0078 | cognate pair, in vitro phosphorylation [13] Expenmenta”y Conﬂrmed

CC2765 | CC2766 0.9902 0.0154 | cognate pair, in vitro phosphorylation [13]
CC2932 | CC2931 0.9759 0.0213 | putative cognate pair

CC2755 | CC2757 0.8681 0.1613 | putative cognate pair i i
CenK CenR 0.7980 0.1601 | #n witro phosphorylation [13] |nteraCt|0n Observed In
ChpT CpdR 0.7766 0.1453 | in wiro phosphorylation [5] - I

pleC DivK 0.6639 0.2088 | in wtro phosphorylation [13] yeaSt tWO hybrld Screen.
CckN CtrA 0.6379 0.1606 | not known

DivL CC0588 0.6187 0.2272 | not known i 1

Divl] PleD 0.4890 0.2190 | #n vitro phosphorylation [13] NO data avallable elther
CckN PleD 0.2834 0.1143 | not known .

Div] CtrA 0.2147 0.1269 | #n vitro phosphorylation [18] for or agaInSt'

PleC PleD 0.1650 0.1332 | in vitro phosphorylation [13]

Cenk CC0588 | 0.1260 0.0913 | false positive, in vitro phosphorylation [13] .

Div] DivEK 0.1045 0.0401 | in vitro phosphorylation [13] - Interactlon not Observed
DivL DivK 0.0964 0.0693 | yeast two-hybrid screen [10] .

CC2755 | CC0588 0.0948 (0.1424 | not known experlmenta”y When tested.

Divl] CenR 0.0881 0.0615 | false positive, in vitro phosphorylation [13]
ChpT DivEK 0.0877 0.1256 | false positive, in vitro phosphorylation [5]
Div] CC0588 | 0.0638 0.0214 | false positive, in vitro phosphorylation [5]

DivL CtrA 0.0637 0.0357 | #n vitro phosphorylation [18]

CenK CCo432 0.0608 (0.1216 | not known 0 .

DivL PleD 0.0574 0.0600 | not known PrObablllty tO get thIS matCh by
DivL CCp432 0.0479 0.0958 | not known .

ChpT CtrA 0.0415 0.0324 | in witro phosphorylation [5] Chance. -13
CckN DivK 0.0407 0.0345 | yeast two-hybrid screen [10] p = 1 _4 kK 10

Top predictions for hisKA kinases with known interactions.
(of 319 possible interactions). List was cut to have at least
1 prediction for all kinases for which an interaction is known.
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Results predicting orphan interactions

One hisKA orphan interaction known in Helicobacter pylori.

kinase regulator | posterior | std | exp evidence

HP0244 | HPO703 | 1 0 in vitro phosphorylation [4]
HP0244 | HP1067 0 0

HP0244 | HP1043 0 0

HP0244 | HP1021 0 0

HP0244 | HPO616 0 0

HP0244 | HP0393 0 0

HP0244 | HP0019 0 0

Known interaction is predicted with posterior 1.
There are 7 orphan receivers in Helicobacter pylori.
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Beyond maximum-likelihood spanning tree: /5.
summing over spanning trees

Probability of the data given a spanning dependence tree:

. T(21*2)
P(D|x)= T(n+ 2121) {H Mi:||:H Rin(i):|

I 1£r

We would like to sum over all possible trees:

<« P(D|7r)  T(21°2)
=2 |z |F(n+21°2) {HM‘}Z{H Ri”‘”}

T |7Z-| i T I=r

Example: for 3 positions we would sum over the three spanning trees:

S ov de

P(D) ¢ R,R;5 + R3Rp; + Ri,R;
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Generalization of the matrix-tree theorem =

Define Laplacian matrix: Lij — 5ij Z Rik - Rij
k

|: —  Matrix L with a single row and column removed
Theorem: i ] ~
2| I [ Rz | =det(L)
T L |

One catch: R has some components that are extremely large and others that are extremely
small. We so far have found no numerically stable way of calculating the determinant, only
uncontrolled approximations.

Test:

« Take all cognate kinases and receivers and run Monte-Carlo assigning all genomes at the
same time.

« Score the combination of assignments from all genomes using the determinant.

* Note: No training set!
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Results predicting cognate interactions ab initio”

0 i i i : : i ; i i :
0 0102030405068070809 1
sensitivity

Caveat: We cannot show that the Monte-Carlo has converged (and believe it has in fact not).
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