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from Topology to Kinetics
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C. elegans PPl from
Li et al. (Vidal's lab), Science (2004)

networks

= Nodes - proteins

= Edges - protein-protein
binding interactions

= Functions

structural
complexes/dimers
regulation/signaling
unknown?

etc



i How much data Is out there?

Species Set nodes edges # of sources
S.cerevisiae HTP-PI 4,500 13,000 5
LC-PI 3,100 20,000 3,100
D.melanogaster HTP-PI 6,800 22,000 2
C.elegans HTP-PI 2,800 4,500 1
H.sapiens LC-PI 6,400 31,000 12,000
HTP-PI 1,800 3,500 2
H. pylori HTP-PI 700 1,500 1

P. falciparum HTP-PI 1,300 2,800 1



i Yeast two-hybrid technique

uses two “hybrid proteins”: bait A* (A fused
with Gal4p DNA-binding domain) and prey B* (B fused
with Gal4p activation domain)

RNA
A* ( B* r Polymeraze
—

Gal4-binding domain Gal4-activated reporter gene

e Cons: wrong (very high) concentrations, localization
(unless both proteins are nuclear), and even host
organism (unless done in yeast)

e Pros: direct binding events

e Main source of noise: self-activating baits



Affinity capture +
i Mass Spectrometry

e(multi-)protein complex
pulled out by affinity-tagged
protein (bait)

lonizer Mass Filter Detector

e Pros: in vivo concentrations and localizations
e Cons: binding interactions are often indirect
e Main source of noise: highly abundant and sticky proteins



Breakup by experimental
‘L technique In yeast

BIOGRID database S. cerevisiae
Affinity Capture-Mass Spec 28172
Affinity Capture-RNA 55
Affinity Capture-Western 5710
Co-crystal Structure 107
FRET 43
Far Western 41
Two-hybrid 11935

Total 46063



What are the common
i topological features?

1. Broad distribution of the number of
Interaction partners (degree K) of
Individual proteins

2. Anti-correlation of degrees of
Interacting proteins

3. Small-world-property
(follows from 1. for <K?>/<K>>2)



Protein binding networks
have small-world property

86% of proteins could be connected 83% in this plot

Pajak

Large-scale Y2H experiment  Curated dataset from our study



i Why small-world matters?

s Claims of “robustness” of this network
architecture come from studies of the Internet
where breaking up the network Is a disaster

= For PPl networks it i1s the OPPOSITE:
iInterconnected networks present a problem

= In a small-world network equilibrium
concentrations of all proteins are coupled to
each other

= Danger of undesirable cross-talk



Going beyond topology and
modeling the equilibrium and
Kinetics

SM, K. Sneppen, I. Ispolatov, g-bio/0611026; SM, I. Ispolatov, subm. (2007)



i What I1s heeded to model?

= A reliable network of reversible (non-catalytic)
protein-protein binding interactions

N \/ CHECK! e.g. physical interactions between yeast
proteins in the BIOGRID database with 2 or more citations
= Total concentrations and sub-cellular localizations of
all proteins

N \/ CHECK! genome-wide data for yeast in 3 Nature papers
(2003, 2003, 2006) by the group of J. Weissman @ UCSF

= Left us with 1700 yeast proteins and —5000 interactions

= /n vivo dissociation constants K;

= OOPS! ®. High throughput experimental techniques are
not there yet



i Let’s hope It doesn’'t matter

The overall binding strength from the PINT database:
<1/K;==1/(5nM). In yeast: 1nM ~ 34 molecules/cell

= Simple-minded assignment K;=const=10nM
(also tried 1nM, 100nM and 1000nI\/I)

= Evolutionary-motivated assignment:

Ki=max(C;,C;)/20: K Is only as small as needed to
ensure bmdmg

= All assignments of a given average strength give
ROUGHLY THE SAME RESULTS



i Law of Mass Action

N dDAB/dt — ron FA FB_ roﬂ: DAB
= In equilibrium D,;=F, Fg/K,; where the

dissociation constant K,g= r /I,
has units of concentration

s [otal concentration = free
concentration + bound concentration->
C,= Fy+F, Fo/Kyg 3 Co= Fg+F, Fo/K,g

m F,=C,/(1+F,/K\g); Fe=Co/(1+F;/K,p)



Law of Mass Action equilibrium
i of a PPl network

= In a network Fi:Ci/(l'l'Zneighborsj Fj/Kij)

= Even though it cannot be solved
analytically it is easily solved
numerically e.g. by iterations

= We use experimentally measured total
concentrations C; to calculate all
unbound (free) F and all bound D;=F,
F/K;; concentrations
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max(Ci,Ci),f20 (mean 5nM)

]

heterodimer conc. for K.

Robustness with respect to
assignment of K;
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Numerical study of
i propagation of perturbations

= We simulate a twofold increase of the abundance C,
of just one protein

= Proteins whose free concentration F; changes by
>20% are considered to be significantly perturbed.

= We refer to such proteins i as concentration-coupled
to the protein O

= Look for cascading perturbations: changes in the total
concentration C, of P, affects F, of its binding partner
P,, which In turn affects F, of its partner P,, etc.



Indiscriminate cross-talk 1s
suppressed

100%

fraction of proteins affected

0.001%}

0.0001%

1 2 3 4 5
network distance



number of concentration-coupled pairs

—a—| =1
——L=2

10”7 107 10 107
K q (Molars)
L | variable A;;, | constant constant constant constant all pairs at
mean= 5nM | K;; = InM | K;; = 10nM | K;; =0.1uM | K;; = 1uM | distance L
1 | 2003 2469 1915 1184 387 8168
2 | 415 1195 653 206 71 29880
3115 159 49 3 0 87772
4 12 60 19 0 0 228026
510 3 0 0 0 396608

SM, 1. Ispolatov, submitted (2007)
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What conditions
make some

long chains
good conduits
for propagation of
concentration perturbations
while suppressing it
along the rest ?



i Resistor network analogy

= Conductivities Gjj— dimer (bound)

concentrations D;;

= Losses to the ground O;g — free (unbound)
concentrations F,

m Electric potentials — relative changes in free
concentrations (-1)- 6F./F,

= Injected current — initial perturbation 6C,

SM, K. Sneppen, . Ispolatov, g-bio/0611026
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Perturbations propagate along dimers with large concentrations
They cascade down the concentration gradient and thus directional

Free concentrations of intermediate proteins are low
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Implications of our results



Cross-talk via small-world

i topology Is suppressed, but...

Good news: on average perturbations via
reversible binding rapidly decay

Still, the absolute number of concentration-
coupled proteins is large

In response to external stimuli levels of
several proteins could be shifted. Cascading
changes from these perturbations could
either cancel or magnify each other.

Our results could be used to extend the list of
perturbed proteins measured e.g. In
microarray experiments



i Genetic Interactions

= Propagation of concentration
perturbations Is behind many genetic
Interactions e.g. of the “dosage rescue”
type

= We found putative “rescued” proteins

for 136 out of 772 such pairs (18% of
the total, P-value 10-%1%)




10%¢

fraction of of dosage rescue pairs

distance in PPI netork

SM, K. Sneppen, I. Ispolatov, g-bio/0611026; SM, I. Ispolatov, subm. (2007)



i Intra-cellular noise

Noise is measured for total concentrations C,
(Newman et al. Nature (2006))

Needs to be converted in biologically relevant
bound (Djy) or free (F;) concentrations

Different results for intrinsic and extrinsic
noise

Intrinsic noise could be amplified (sometimes
as much as 30 times!)



extrinsic noise

intrinsic noise

10° 100 100 10
free concentration

10

free concentration



Could 1t be used for
i regulation and signaling?

= 3-step chains exist in bacteria: anti-anti-
sigma-factors - anti-sigma-factors - sigma-
factors = RNA polymerase

= Many proteins we find at the receiving end of
our long chains are global regulators (protein
degradation by ubiguitination, global
transcriptional control, RNA degradation, etc.)

= Other (catalytic) mechanisms spread perturbations
even further

= Feedback control of global protein abundance?



NOW BACK TO TOPOLOGY



What are the common
‘L topological features?

1. Broad distribution of the number of
Interaction partners of individual
proteins
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Evolutionary explanation:
duplication-divergence models

= A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Modelling of
protein interaction networks. cond-mat/0108043, (2001) published in
ComPlexUs 1, 38 (2003)

= Followed by R. V. Sole, R. Pastor-Satorras, E. Smith, T. B. Kepler, A
model of large-scale proteome evolution, cond-mat/0207311 (2002)
published in Advances in Complex Systems 5, 43 (2002)

= Then many others including l.Ispolatov, I., Krapivsky, P.L., Yuryev, A.,
Duplication-divergence model of protein interaction network, Physical
Review, E 71, 061911, 2005.

O » Network has to grow
e Divergence has to be
B —9 asymmetric

(K Evlampiev, H Isambert,
g-bio.MN/0611070)




‘L Gene duplication

Right after duplication After some time

Pair of dupllcated proteins Pair of dupllcated proteins

e Al

Shared mteractlons Shared Interactions




Traces of duplication in PPl networks
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But: how important are

i duplications for sha
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Biophysical explanation:
“stickiness” models

= G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Munoz, Scale-free
Networks without Growth or Preferential Attachment: Good get Richer,
cond-mat/0207366, (2002) published in PRL (2002)

= Followed by Deeds, E.J. and Ashenberg, O. and Shakhnovich, E.I.,
A simple physical model for scaling in protein-protein interaction
networks, PNAS (2006)

= Then others including Yi Y. Shi, G.A. Miller, H. Qian, and K. Bomsztyk,
Free-energy distribution of binary protein—protein binding suggests
cross-species interactome differences, PNAS (2006).

» Nodes have intrinsic “stickiness” S.,.

e Stickiness could have exponential or Gaussian PDF.
 Binding edge i - ] is drawn with probability p;=F(S;+S))
e Fis some (soft) threshold function, e.g.
exp(S;+Si-mu)/(1+ exp(S;+S;-mu))

e Network does not have to grow




There are just

i TOO MANY homodimers

Ndimer N Ogimer

yeast 179 6.6 + 0.2
worm 89 3.3 0.1
fly 160 5.9+ 0.1
human 1045 5.7+ 0.1

e Null-model:

Pse/f ~<k>/N

N (r)dimer =N o Pse/f
= <k>

e Not surprising as
homodimers have
many functional
roles

|. Ispolatov, A. Yuryev, I. Mazo, and SM, 33, 3629 NAR (2005)
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i Our Interpretation

= Both the number of interaction partners K; and the
likelihood to self-interact are proportional to the same
“stickiness” of the protein S; which could depend on
= the number of hydrophobic residues on the surface
= protein abundance

= Its’ popularity (in networks taken from many small-scale
experiments)

s efc.

= In random networks pi...(K)—K? not ~K like we
observe empirically

|. Ispolatov, A. Yuryev, I. Mazo, and SM, 33, 3629 NAR (2005)



Functional explanation:
there are as many binding partners
i as needed for function

= Not an explanation: why difficulty of
functions is so heterogeneous?

= Difficult to check: the function of many
binding interactions is poorly understood
(quite clear Iin transcriptional regulatory
networks e.qg. in £. col)

= The 3rd explanation does not exclude the
previous two: Evolution by duplications
combined with pure Biophysics (stickiness)
provide raw materials from which functional
Interactions are selected




What are the common
i topological features?

= Broad distribution of the number of
Interaction partners (degree) of
iIndividual proteins

= Anti-correlation of degrees of
Interacting proteins



Central vs peripheral
i network architecture

central peripheral
(hierarchical) random (anti-hierarchical)

A. Trusina, P. Minnhagen, SM, K. Sneppen, Phys. Rev. Lett. 92, 17870, (2004)



What Is the case for
i protein interaction network

102 y :
300 15

. A
2 14
K= 100 13
f:’ i
o - 11.2
° 30 11
> B 1 .
=
> B =
'_,3 101 x g {1
2 10 . os
5
o 08
o
Q 3 0.7
o
>
= 06

100 . s 11 05

Connectivity of a node

SM, K. Sneppen, Science 296, 910 (2002)



‘_L Randomization

—)

given complex
network random



Edge swapping
i (rewiring) algorithm

/,/>> L

= Randomly select and
rewire two edges

= Repeat many times

I).

SM, K. Sneppen, Science 296, 910 (2002)



i Metropolis rewiring algorithm

“energy” EH/ 4 energy E-+AE

L Py

= Randomly select two edges

= Calculate change AE In “energy function”
E:(Nactual'Ndesired)ledesired
= Rewire with probability p=exp(-AE/T)

SM, K. Sneppen, cond-mat/0205379 (2002) Physica A 333, 529 (2004).



Anton Yuryev, AG laroslav Ispolatov llya Mazo
Kasper Eriksen, Research scientist President
U. of Lund Ariadne Genomics Ariadne Genomics
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