Protein Binding Networks: from Topology to Kinetics

Sergei Maslov Brookhaven National Laboratory

Genome-wide protein binding networks

- Nodes proteins
- Edges protein-protein binding interactions
- Functions
 - structural
 - complexes/dimers
 - regulation/signaling
 - unknown?
 - etc

C. elegans PPI from Li et al. (Vidal's lab), Science (2004)

How much data is out there?

Species	Set	nodes	edges #	of sources
S.cerevisiae	HTP-PI	4,500	13,000	5
	LC-PI	3,100	20,000	3,100
D.melanogaster	HTP-PI	6,800	22,000	2
<i>C.elegans</i> HTP-PI		2,800	4,500	1
H.sapiens LC-PI		6,400	31,000	12,000
	HTP-PI	1,800	3,500	2
H. pylori	HTP-PI	700	1,500	1
P. falciparum	HTP-PI	1,300	2,800	1

Yeast two-hybrid technique

uses two "hybrid proteins": bait A* (A fused with Gal4p DNA-binding domain) and prey B* (B fused with Gal4p activation domain)

- Cons: wrong (very high) concentrations, localization (unless both proteins are nuclear), and even host organism (unless done in yeast)
- Pros: direct binding events
- Main source of noise: self-activating baits

Affinity capture + Mass Spectrometry

- Pros: in vivo concentrations and localizations
- Cons: binding interactions are often indirect
- Main source of noise: highly abundant and sticky proteins

Breakup by experimental technique in yeast

BIOGRID database	S. cerevisiae		
Affinity Capture-Mass Spe	c 28172		
Affinity Capture-RNA	55		
Affinity Capture-Western	5710		
Co-crystal Structure	107		
FRET	43		
Far Western	41		
Two-hybrid	11935		
Total	46063		

What are the common topological features?

- Broad distribution of the number of interaction partners (degree K) of individual proteins
- 2. Anti-correlation of degrees of interacting proteins
- Small-world-property (follows from 1. for < K $^2>$ /< K>>2)

Protein binding networks have small-world property

83% in this plot 86% of proteins could be connected

Why small-world matters?

- Claims of "robustness" of this network architecture come from studies of the Internet where breaking up the network is a disaster
- For PPI networks it is the OPPOSITE: interconnected networks present a problem
- In a small-world network equilibrium concentrations of all proteins are coupled to each other
- Danger of undesirable cross-talk

Going beyond topology and modeling the equilibrium and kinetics

What is needed to model?

- A reliable network of reversible (non-catalytic) protein-protein binding interactions
 - V CHECK! e.g. physical interactions between yeast proteins in the BIOGRID database with 2 or more citations
- Total concentrations and sub-cellular localizations of all proteins
 - CHECK! genome-wide data for yeast in 3 Nature papers (2003, 2003, 2006) by the group of J. Weissman @ UCSF
 - Left us with 1700 yeast proteins and ~5000 interactions
- in vivo dissociation constants K_{ij}
 - OOPS! 8. High throughput experimental techniques are not there yet

Let's hope it doesn't matter

- The overall binding strength from the PINT database: $<1/K_{ij}>=1/(5nM)$. In yeast: 1nM \sim 34 molecules/cell
- Simple-minded assignment K_{ij}=const=10nM (also tried 1nM, 100nM and 1000nM)
- Evolutionary-motivated assignment:
 K_{ij}=max(C_i,C_j)/20: K_{ij} is only as small as needed to ensure binding
- All assignments of a given average strength give ROUGHLY THE SAME RESULTS

-

Law of Mass Action

- $dD_{AB}/dt = r_{on} F_A F_B r_{off} D_{AB}$
- In equilibrium D_{AB}=F_A F_B/K_{AB} where the dissociation constant K_{AB}= r_{off}/r_{on} has units of concentration
- Total concentration = free concentration + bound concentration \rightarrow $C_A = F_A + F_A F_B / K_{AB}$; $C_B = F_B + F_A F_B / K_{AB}$
- $F_A = C_A/(1+F_B/K_{AB}); F_B = C_B/(1+F_B/K_{AB})$

Law of Mass Action equilibrium of a PPI network

- In a network $F_i = C_i/(1 + \sum_{\text{neighbors } j} F_j/K_{ij})$
- Even though it cannot be solved analytically it is easily solved numerically e.g. by iterations
- We use experimentally measured total concentrations C_i to calculate all unbound (free) F_i and all bound D_{ij}=F_i F_i/K_{ij} concentrations

Numerical study of propagation of perturbations

- We simulate a twofold increase of the abundance C₀ of just one protein
- Proteins whose free concentration F_i changes by
 20% are considered to be significantly perturbed.
- We refer to such proteins i as concentration-coupled to the protein 0
- Look for cascading perturbations: changes in the total concentration C₀ of P₀ affects F₁ of its binding partner P₁, which in turn affects F₂ of its partner P₂, etc.

Indiscriminate cross-talk is suppressed

L	variable K_{ij} ,	constant	constant	constant	constant	all pairs at
	mean= 5nM	$K_{ij} = 1$ nM	$K_{ij} = 10$ nM	$K_{ij} = 0.1 \mu M$	$K_{ij} = 1\mu M$	distance L
1	2003	2469	1915	1184	387	8168
2	415	1195	653	206	71	29880
3	15	159	49	8	0	87772
4	2	60	19	0	0	228026
5	0	3	0	0	0	396608

SM, I. Ispolatov, submitted (2007)

What conditions make some

long chains good conduits

for propagation of concentration perturbations while suppressing it along the rest?

Resistor network analogy

- Conductivities σ_{ij} dimer (bound) concentrations D_{ij}
- Losses to the ground σ_{iG} free (unbound) concentrations F_i
- Electric potentials relative changes in free concentrations (-1)^L δF_i/F_i
- Injected current initial perturbation δC₀

- Perturbations propagate along dimers with large concentrations
- They cascade down the concentration gradient and thus directional
- Free concentrations of intermediate proteins are low

Implications of our results

- Good news: on average perturbations via reversible binding rapidly decay
- Still, the absolute number of concentrationcoupled proteins is large
- In response to external stimuli levels of several proteins could be shifted. Cascading changes from these perturbations could either cancel or magnify each other.
- Our results could be used to extend the list of perturbed proteins measured e.g. in microarray experiments

Genetic interactions

- Propagation of concentration perturbations is behind many genetic interactions e.g. of the "dosage rescue" type
- We found putative "rescued" proteins for 136 out of 772 such pairs (18% of the total, P-value 10⁻²¹⁶)

SM, K. Sneppen, I. Ispolatov, q-bio/0611026; SM, I. Ispolatov, subm. (2007)

Intra-cellular noise

- Noise is measured for total concentrations C_i
 (Newman et al. Nature (2006))
- Needs to be converted in biologically relevant bound (D_{ii}) or free (F_i) concentrations
- Different results for intrinsic and extrinsic noise
- Intrinsic noise could be amplified (sometimes as much as 30 times!)

Could it be used for regulation and signaling?

- 3-step chains exist in bacteria: anti-antisigma-factors → anti-sigma-factors → sigmafactors → RNA polymerase
- Many proteins we find at the receiving end of our long chains are global regulators (protein degradation by ubiquitination, global transcriptional control, RNA degradation, etc.)
 - Other (catalytic) mechanisms spread perturbations even further
 - Feedback control of global protein abundance?

NOW BACK TO TOPOLOGY

What are the common topological features?

 Broad distribution of the number of interaction partners of individual proteins

- What's behind this broad distribution?
- Three explanations were proposed:
 - EVOLUTIONARY (duplication-divergence models)
 - BIOPHYSICAL (stickiness due to surface hydrophobicity)
 - FUNCTIONAL (tasks of vastly different complexity)

From YY. Shi, GA. Miller., H. Qian., and K. Bomsztyk, PNAS 103, 11527 (2006)

Evolutionary explanation: duplication-divergence models

- A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Modelling of protein interaction networks. cond-mat/0108043, (2001) published in ComPlexUs 1, 38 (2003)
- Followed by R. V. Sole, R. Pastor-Satorras, E. Smith, T. B. Kepler, A model of large-scale proteome evolution, cond-mat/0207311 (2002) published in Advances in Complex Systems 5, 43 (2002)
- Then many others including I.Ispolatov, I., Krapivsky, P.L., Yuryev, A., Duplication-divergence model of protein interaction network, Physical Review, E 71, 061911, 2005.

- Network has to grow
- Divergence has to be asymmetric

(K Evlampiev, H Isambert, q-bio.MN/0611070)

Gene duplication

Right after duplication

Pair of duplicated proteins

Shared interactions

After some time

Pair of duplicated proteins

Shared interactions

Traces of duplication in PPI networks

SM, K. Sneppen, K. Eriksen, and K-K. Yan, BMC Evol. Biol. **4**, 9 (2003) (a similar but smaller scale-plot vs K_s in A. Wagner MBE 18, 1283 (2001)

Duplicationdivergence models could still be OK if sequences diverge relatively fast

J. Berg, M. Lässig, and A. Wagner, BMC Evol. Biol. (2004)

Biophysical explanation: "stickiness" models

- G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Munoz, Scale-free Networks without Growth or Preferential Attachment: Good get Richer, cond-mat/0207366, (2002) published in PRL (2002)
- Followed by Deeds, E.J. and Ashenberg, O. and Shakhnovich, E.I., A simple physical model for scaling in protein-protein interaction networks, PNAS (2006)
- Then others including Yi Y. Shi, G.A. Miller, H. Qian, and K. Bomsztyk, Free-energy distribution of binary protein—protein binding suggests cross-species interactome differences, PNAS (2006).
 - Nodes have intrinsic "stickiness" S_i.
 - Stickiness could have exponential or Gaussian PDF.
 - Binding edge i j is drawn with probability $p_{ii} = F(S_i + S_i)$
 - F is some (soft) threshold function, e.g. $\exp(S_i+S_i-mu)/(1+\exp(S_i+S_i-mu))$
 - Network does not have to grow

There are just TOO MANY homodimers

	$N_{ m dimer}$	$N^{(r)}_{ m dimer}$
yeast	179	6.6 ± 0.2
worm	89	3.3 ± 0.1
fly	160	5.9 ± 0.1
human	1045	5.7 ± 0.1

• Null-model:

$$P_{self} \sim \langle k \rangle / N$$
 $N^{(r)}_{dimer} = N \bullet P_{self}$
 $= \langle k \rangle$

 Not surprising as homodimers have many functional roles

$$P_{dimer}(k) = 1 - (1 - p_{self})^k$$

Fly: two-hybrid data

P_{self}~0.003, P_{others}~0.0002

Human: literature data $P_{self} \sim 0.05$, $P_{others} \sim 0.0002$

I. Ispolatov, A. Yuryev, I. Mazo, and SM, **33**, 3629 NAR (2005)

Our interpretation

- Both the number of interaction partners K_i and the likelihood to self-interact are proportional to the same "stickiness" of the protein S_i which could depend on
 - the number of hydrophobic residues on the surface
 - protein abundance
 - its' popularity (in networks taken from many small-scale experiments)
 - etc.
- In random networks p_{dimer}(K)~K² not ~K like we observe empirically
- I. Ispolatov, A. Yuryev, I. Mazo, and SM, 33, 3629 NAR (2005)

- Not an explanation: why difficulty of functions is so heterogeneous?
- Difficult to check: the function of many binding interactions is poorly understood (quite clear in transcriptional regulatory networks e.g. in *E. coli*)
- The 3rd explanation does not exclude the previous two: Evolution by duplications combined with pure Biophysics (stickiness) provide raw materials from which functional interactions are selected

- Broad distribution of the number of interaction partners (degree) of individual proteins
- Anti-correlation of degrees of interacting proteins

Central vs peripheral network architecture

Randomization

Edge swapping (rewiring) algorithm

- Randomly select and rewire two edges
- Repeat many times

Metropolis rewiring algorithm

- Randomly select two edges
- Calculate change ∆E in "energy function" E=(N_{actual}-N_{desired})²/N_{desired}
- Rewire with probability p=exp(-∆E/T)

Anton Yuryev, AG Kasper Eriksen, U. of Lund Iaroslav Ispolatov Research scientist Ariadne Genomics

Ilya Mazo President Ariadne Genomics

Kim Sneppen NBI, Denmark

Koon-Kiu Yan, PhD student @ Stony Brook U