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“Design principles” of Regulatory Modules
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All based on functional characteristics



General Question

Given: « 2 different designs
 perform (essentially) the same
regulatory function
(no fitness difference)

Choice Is made by evolution ...

... at random?
... oris the choice biased?

(— population genetics problem)



Case study: a simple genetic switch

Functional characteristic: Response function
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. can be obtained in two ways
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 hypothesize on a functional difference between
the two modes of regulation

o if functional difference depends on demand
— selection between the two modes



Evolutionary design principle?

Evolvability

« appears not to be a problem, both modes of
gene regulation are ubiquitous

4 N

Average growth rate of the population

 deleterious mutations reduce growth rate
(a.k.a. mutational load)
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Fluctuating environment - Time-dep. selection

Selection pressure
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A [lactose]
&5 = = 8=
1 0 B T
S S S S
= = = S
S S S S
= = = S
Ny N N K
= = = = .
4 o(t)
I
A a(t) activator
=5 8 8 =
1T 00T
= = = =
|
S S S S .

t

High demand

A [arabinose]

p o) repressor

N_NH N N -

4 o(t) activator

Use-it-or-lose-it principle



Evolution Model

Periodic selection pressure: T =T, yce + Twait Demand:
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Time-evolution?



Mutation-selection dynamics

. . d
Evolution equation:  —z = v_ — [a(t) +v- +vi]z + a(t) z?

Instantaneous reduction of growth rate: 7Y — —«& (t) - E(t)

Time-averaged
t t  reduction:

Y= —V_

(independent

of demand)




Correction:

Low demand:

So far:
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Real life experience
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Finite Population: Fluctuation effects

Wright Fisher model:

current | N +N,
generation

Nb(t) ! Nnb(t)
next ‘ : g
generation

N, (t+1) , N (t+1) | S S

. _ N | |
Genetic drift P(x' t+1]|x,t) :[N leXN.x (1_X)N(1—x)

N, (t) changes without mutation or selection (sampling effect) !



Dependence on population size
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What is the new effect caused by
genetic drift ?

typical fluctuations rare fluctuation
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“Extinction” probability

Dynamics of nonbinders:

Inducer on: nonbinders eliminated e |
Inducer off: nonbinders generated . 0'8__
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Scaling function from (backward) Fokker-Planck equation:
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Two-state approximation

rare fluctuation
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Evolutionary design principle

wear-and-tear

use-it-or-lose-it
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Effective population size

o typically smaller than census size

 E. coli: large range of estimates

10° < Negp < 2-10°

[ Bulmer, Genetics (1991) | [ Hartl et al., Genetics (1994) ]

» pronounced population substructure

(colonies inside our gut)



Conclusions

« Population dynamics can lead to evolutionary
design principle

e Two Important parameters: Population size
& Timescale of environmental fluctuations

e Quantitative description crucial:
Balance between two opposing effects
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