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TF-DNA Energy Models from Binding Assays

•

 

Transcription factors (TFs) are DNA-binding proteins which regulate 
gene transcription: key regulatory mechanism in all organisms.

•

 

A quantitative understanding of gene regulation and its evolution, 
requires a quantitative understanding of TF-DNA interaction, i.e. 
sequence-dependent binding energy (SDBE). 

•

 

High-throughput experiments can give massive amounts of (rather 
noisy) information on TF-DNA binding. Popular examples are
•

 

PBM: protein binding microarrays (in vitro)
•

 

ChIP-chip: chromatin immuno-precipitation microarrays (in vivo)
•

 

Usual goal: use the data to identify the TF binding sites (yes-no answer)
•

 

Our goal: infer quantitative

 

SDBE models from this noisy data. We will 
take the statistical inference approach used in physics to deal with 
WMAP/HEP data: we seek a probability distribution on model space.
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Some Philosophy: Lexical vs. Energetic Approach

•

 

The binding specificity problem has two classic formulations:
•

 

Lexical: Is there a statistical sequence pattern (motif or pwm) that 
distinguishes true TF binding sites from “random”

 

genomic background?
•

 

Energetic: Can we construct an accurate representation of the binding 
energy of the TF to general site sequences (an SDBE function)?

•

 

NB: Biological function is determined by energy, not p-value!
•

 

But energy is hard to measure, while sequence is “easy”. Hence, 
more effort has gone into “motif-finding”

 

than into energetics.
•

 

B+vH

 

algorithm for turning binding site sequences (of one TF) into 
an energy function (E-matrix) merges the two approaches. But …
•

 

Assumes that the sites evolve out of random background genome under 
the same selection pressure (a kind of ergodic

 

hypothesis).
•

 

The conditions for lexical/energetic equivalence can easily fail

 

(as far as 
random background goes, just think of Plasmodium!).

•

 

Since binding assay experiments probe energy, it makes sense to 
try to model energy directly …

 

sequence comes along for the ride.
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PBM Assay Overview  (Mukherjee
 

et al)

bind

label
scan

•
 

Uses dsDNA

 

microarrays

 

to simultaneously assess TF binding to all 
intergenic

 

regions of S. cerevisiae.

•

 

Fluorescence log-intensity ratios (LIRs)

 

are filtered, averaged over 
replicates and normalized to taste. Each sequence si is assigned 
some best measured value zi (for i = 1,2, …, N intergenic

 

regions).
•

 

Connection between these measured values and whether a TF is 
bound to the region (or not) is very noisy due to the complicated and 
loosely-controlled chemistry. How to interpret the data?
•ChIP-chip assay (in vivo) produces similar-looking data.
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Simple Binding Energy (and Binding) Model

•

 

Bases within a site (length L) contribute 
additively to the binding energy. Model is 
a 4xL

 

“energy matrix”

 

M.
•

 

A stretch

 

of DNA is “bound”

 

if it contains 
a site with E<μ

 

(else  “unbound”). Step 
function model of site occupancy.

•

 

A model (M,μ)

 

predicts whether any 
given DNA sequence s is

 

bound (x=1) 
or

 

unbound (x=0).
•

 

How does this compare with what is 
seen in the experiment? Does any 
choice of model (M,μ) explain

 

the data?
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•

 

How good is model M ? If it predicts {xi }, likelihood of actual data {zi } is:

•

 

Bayes’

 

Rule then gives the likelihood of the model, given the data:

•

 

This is a prob

 

dist’n

 

on model space and a basis for statistical inference. 
Good! But …

 

the actual error model is usually totally unknown!

Connecting “Theory”
 

and Experiment:

•

 

Fluorescence z of a bound (unbound) region 
is probabilistic (due to chemistry, etc.). Leads 
to a ``error models’’

 

for the two states:

•

 

Experiment sees only the histogram of net 
fluorescence  N(z)=N0

 

p(z|0)+N1

 

p(z|1) due to 
N0

 

“unbound”

 

+ N1

 

“bound”

 

genes. Usually try 
to discriminate the two states by a “cut”

 

on z.

product over all regions

with model prior p(M)
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Options for More Sophisticated Modeling

•

 

The energy matrix is just the most simple parametric model. We can 
allow for correlations if needed. Number of parameters grows …

•

 

Bottlenecking through a binary model datum (bound vs

 

not bound) is 
a first stab at the problem. We could do more:
•

 

Use Hwa’s

 

thermodynamic model of binding occupancy (Kd , [TF])
•

 

Parse predicted occupancy into multiple levels xi (i=1,…N).
•

 

Analyze in terms of refined error model p({z}|{x}) …
•

 

When does the number of parameters to be determined exceed the 
information content of the data? We don’t know, but

•

 

Will show that data (experimental numbers plus the genomic 
information) on wide-acting yeast TFs

 

fixes a large number of 
parameters: we have not exhausted its information content.
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Quenching the Error Model: EMA Likelihood

•

 

In ignorance of the true error model, we will average data likelihood 
over all error models to get an error-model-averaged (EMA) likelihood.

•

 

To actually do this average, we need to discretize

 

the continuous data
•

 

Bin each region si according to 
fluorescence (discretize

 

N(z)) 
•

 

Find predictions {xi }

 

of model Μ, record 
counts czx

 

per bin (divide bins into 
separate binding populations)

•

 

EMA likelihood is a functional integral:

•

 

Our binned data yield a simple formula:

Mutual information appears!

m bins with
equal #s of
regions ..

each bin
splits into
two states

Practical algorithm for
evaluating

 

p(M|{zi }) (up to 
normalization!)

Cm 1

Cm 0

C1 1

C1 0
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Markov Chain Monte Carlo Evaluation of p(M|{zi })

•

 

Let energy matrix elements live in

 

and let the cutoff take 
values in . 

•

 

Choose a convenient starting point for the matrix, corresponding

 

to a 
known motif if possible (to save time only).

•

 

Go through a schedule of trying out small, normally-distributed 
increments to all matrix elements and the cutoff. Do Metropolis:

•

 

If increment improves p(M|{zi }) (burdensome to compute), accept
•

 

If increment worsens p(M|{zi }), accept with probability pold /pnew

•

 

If increment takes you outside the box, reject and try again 
•

 

In long run, get an ensemble {M,μ} distributed according to p(M|{zi })
•

 

Not normalized, but perfect for computing ensemble averages of ….
•

 

At the end, shift and rescale so that lowest matrix element in each 
column is 0, cutoff μ=1 (leaving model predictions {xi

 

} unchanged).
•

 

PBM/ChIP-chip data leave the absolute scale of energy undetermined!

10 ≤< ibM
max0 μμ pp
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MCMC Estimation Converges Fast (for ABF1)

PBM ChIP-chip
Burn-in test: do 10 
runs, plot inter-

 

and 
intra-run variance for 
each matrix element 
for larger and larger 
samples representing 
longer run times. Unit 
slope straight line is 
convergence signal.

Per-datum log-

 
likelihood rises 
with MCMC time. 
Convergence to 
stable distribution 
is agreeably rapid. 

Key result: p(M|{zi }) has a single smooth peak, easily found by MCMC!
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MCMC Results for TF ABF1p (Yeast)

•

 

MCMC generates 40,000 matrices M 
sampled from p(M|{zi })using

 

EMA 
likelihood. 

•

 

All 80 matrix elements have well-

 
sampled distributions (see insets). 

•

 

Mean matrix makes perfect sense in 
terms of the known motif (more later)

•

 

Distributions are amazingly tight: most 
RMSDs

 

≤

 

5% of functional range.
•

 

Meaningful structure, even in the 
middle of the binding site, where there 
is little specificity.

•

 

That the data imply a smooth prob-

 
ability landscape in the high-dimen-

 
sional

 

model space is a surprise.
•

 

No one model is the “best”

 

model. We 
can now treat model predictions as 
clean probabilistic statements. 

RTCRYNNNNNACGW Y=C,T
R=A,G
W=A,T



2/16/07 KITP EvoNet 12

Results invariant to  changed analysis parameters

Error model discretisation

 
bin size (20-100 per bin)

Width of energy matrix (in bp)

You can even divide the data (intergenic

 

region LIRs) into randomly-chosen halves 
and compare the two mean energy matrices (overfitting

 

test). They agree very well.
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ABF1p MCMC Model Ensemble
 

Predictions

•

 

Ensemble

 

of ABF1p models lets us 
classify sites by hit fraction

•

 

Strongly bimodal hit fraction dist’n

 
cleanly discriminates bound sites

•

 

We find > 1000 sites with h.f. >.5 (and 
result depends only weakly on cutoff)

•

 

Compare expt’l

 

LIR dist’n

 

with h.f. of 
binned regions: consistent with 
credible error model 

•

 

Conservative Mukherjee

 

et al LIR 
cutoff (green line) rejects many 
regions clearly bound by our criterion.

•

 

Model predictions can be recast as an 
effective error model: green curve is 
p(z|1), blue curve is p(z|0) from mean 
energy model on the data.

•

 

EMA method successfully determines 
an amazing number of parameters
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PBM vs. ChIP-chip Data Analysis

•

 

PBM and ChIP-chip data give very similar 
matrices (but with the ChIP-chip cutoff 
set to .75 instead of 1).

•

 

Cutoff stands in for the chemical potential 
of the TF: can vary between experiments 
(but the energy matrix should not!)

•

 

Simple χ2

 

test used to assess the overlap 
between the PBM and ChIP-chip 
distributions for each matrix element, i.e. 
test for consistency.

•

 

Most elements have overlapping 
distributions. Only 3 don’t, and those are 
outside the main site. 

•

 

Element by element match of mean and 
variance between the two analyses is 
impressive: No Free Parameters!

•

 

The error models of the two exp’ts

 

(as 
inferred from the data are very different); 
that the same

 

energy matrix is inferred in 
both cases is a strong consistency check. 
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PBM vs. ChIP-chip Binding Predictions

•

 

We declare sites flagged by > 50% 
of energy matrices to be putative 
binding sites. Can make it tighter.

•

 

Putative ChIP-chip sites are 
almost all predicted by the PBM 
matrices. As they should be! 

•

 

Experimenters identified putative 
sites by cutoff and found poor 
ChIP-chip/PBM prediction overlap.

•

 

Changing the cutoff just admits 
more false positives: to do better, 
must decrease the expt’l

 

noise.
•

 

Our method for “understanding”

 
the noise lets us flag more sites 
with little false positive penalty.

General lesson is that noise can be “understood”

 

if the data is “bottle-

 
necked”

 

through a “good”

 

parametric model. That the difference between 
in vivo versus in vitro experiment is captured this way is a nice surprise.
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Some Results for Other Transcription Factors

REB1 RAP1
This MCMC is 
well-converged.

Ratty distributions 
suggest that MCMC
needs more time to
converge. TBD
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How Well Do We Describe Binding Energies?

•

 

Direct experimental evidence about TF-DNA binding energy is limited 
in scope. We really need hi-throughput direct energy measurements 
for a convincing test of our predictions (see Maerkl

 

and Quake). 
•

 

We can predict scale-free energy differences between binding sites 
(explain). Knowing true Kd

 

‘s

 

for lots of sites would be informative.
•

 

Functional properties of binding sites are governed in large part by 
energy: thus energy, not sequence, should be conserved in evolution 
if function is to be maintained. 

•

 

This suggests that comparing the predicted energies of orthologous

 binding sites would be a good indirect way of assessing whether our 
energy model is doing the right thing.

•

 

If the model passes this test, our hundreds of binding sites would also 
provide the raw material for a quantitative study of evolutionary 
dynamics (genotype = site sequence; phenotype = site energy).
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Orthology
 

and Alignment of Genomes + Sites

Alignment of related sequences amounts to finding the most parsimonious way 
of mutating one into the other (including possibility of creating gaps). Powerful 
software readily available. The red box identifies a binding site in Ecoli

 

and 
shows the sequence of the orthologous

 

site in Salmonella, Note that sequence 
conservation by itself doesn’t do well at picking out likely TF binding sites. 

Example intergenic

 

region with 
predicted ecoli

 

binding site for Crp:
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Binding Energy is Conserved (Yeast ABF1)

•

 

676 (!) intergenic

 

sites in S. cerevisiae 
with Abf1p binding energy < 1 have 
clear orthologs in S. bayanus (the two 
proteins have high degree of homology)

•

 

~75% of these orthologs also have 
energy < 1. Conservation this strong is 
not an accident! No Free Parameters!

•

 

Sites with energy > 1 have little or no 
correlation between energies in the two 
genomes: mutation randomizes energy.

•

 

Clear evidence of selection pressure on 
binding site energy; selection pressure 
on sequence is indirect.

•

 

Precise genotype-phenotype map is 
good starting point for a quantitative 
understanding of how TF binding sites 
and regulatory networks evolved. 

•

 

This will be pursued in the next talk.

Use the energy model derived by likelihood analysis from S.cerevisiae assays to 
assign energies to sites (an a priori genotype-phenotype map):
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Energy Clearly Imprinted on Sequence Evolution

ABF1

We have a rich yeast phylogenetic

 

tree and  
many orthologous

 

site pairs. Can ask pop’n

 
average questions about the likelihood of 
base changes at diff’t

 

locations in thte

 

ABF1 
site. Selection on the basis of energy ….not 
site-by-site, but on average in population.

Substitution probability pattern 
matches structure of energy 
matrix (bigger ΔE’s disfavored). 

Pattern evolves with time (from 
last common ancestor) as if under 
control of common `Hamiltonian’. 
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Comments and Conclusions

•

 

The opportunities for quantitative study of evolution with a large 
population of binding sites and a clean quantitative phenotype 
are pretty exciting.

•

 

That a minimalist energy model so accurately describes 
complex DNA binding data is a big surprise. Arbitrary sets of 
100s of genes cannot be so regulated; how rare are large sets 
which could be? 

•

 

Different binding sites have different affinities (for good 
reasons?). We make specific predictions about how affinities 
are ordered. How does this concord with biochemical reality? 

•

 

The output of this effort is meant to be input to an effort to 
construct proper stat mech

 

models of interesting networks.
•

 

The “paradigm”

 

that data determines a probability distribution on 
a space of parameterized models is much more general than 
this particular implementation. Our work is a “proof of principle”. 
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