

Rockefeller University ***

Overview: The Cell-Cycle Control System 3-0

Figure 3-1 A simplified view of the cell-cycle control system Levels of the three major cyclin types oscillate during the cell cycle (top), providing the basis for oscillations in the cyclin–Cdk complexes that drive cell-cycle events (bottom). In general, Cdk levels are constant and in large excess over cyclin levels; thus, cyclin–Cdk complexes form in parallel with cyclin levels. The enzymatic activities of cyclin–Cdk complexes also tend to rise and fall in parallel with cyclin levels, although in some cases Cdk inhibitor proteins or phosphorylation introduce a delay between the formation and activation of cyclin–Cdk complexes. Formation of active G1/S–Cdk complexes commits the cell to a new division cycle at the Start checkpoint in late G1. G1/S–Cdks then activate the S–Cdk complexes that initiate DNA replication at the beginning of S phase. M–Cdk activation occurs after the completion of S phase, resulting in progression through the G2/M checkpoint and assembly of the mitotic spindle. APC activation then triggers sister-chromatid separation at the metaphase-to-anaphase transition. APC activity also causes the destruction of S and M cyclins and thus the inactivation of Cdks, which promotes the completion of mitosis and cytokinesis. APC activity is maintained in G1 until G1/S–Cdk activity rises again and commits the cell to the next cycle. This scheme serves only as a general guide and does not apply to all cell types.

"The Cell Cycle" David Morgan

Different cyclins control different phases of the cell cycle

Questioning the dogma of cyclin mediated cdk specificity

(Fisher and Nurse, 1996)

Cdk1 is sufficient to drive the mammalian cell cycle

David Santamaría¹*, Cédric Barrière^{1,2}*†, Antonio Cerqueira¹, Sarah Hunt¹†, Claudine Tardy¹, Kathryn Newton³, Javier F. Cáceres³, Pierre Dubus², Marcos Malumbres¹ & Mariano Barbacid¹ Nature 2007

Is a single cdk-cyclin oscillator sufficient and flexible enough to drive dramatically different events?What constitutes the minimal machinery that supports the cell cycle?

Damien Coudreuse

Reduction of the fission yeast Cdk oscillator to a single fusion protein

Reduction of the fission yeast Cdk oscillator to a single fusion protein

cdc13::cdc2::YFP \triangle cdc2 \triangle cdc13 \triangle cig1 \triangle cig2 \triangle puc1

The Wee1 and Cdc25 network is essential for checkpoint activation

S phase checkpoint

The Wee1 and Cdc25 network is essential for checkpoint activation

DNA damage checkpoint

YE4S

YE4S + irradiation

The Wee1/Cdc25 loop is essential for the homogeneity of the population

Size at division (µm)

The Cdc13::cdc2 fusion protein drives the cell cycle autonomously

cdc13C379Y::cdc2as \triangle cdc2 \triangle cdc13

A tunable and minimal cell cycle

cdc13::cdc2as \triangle cdc2 \triangle cdc13 \triangle cig1 \triangle cig2 \triangle puc1

	Wt	as
Size at division (µm)	15.9 ± 0.2	14.7 ±
Generation time (min)	162 ± 5.5	0.3
Septation index (%)	13.4 ± 0.1	158 ± 5.5
		13.7 ± 0.6

 $1 \,\mu\text{M}$ NmPP1

The minimal cell cycle is dependent upon changes in a single CDK activity

Entry into M depends upon a high activity threshold

0.25 µM NmPP1 prevents mitotic entry

Entry into S depends upon a low activity threshold

cdc13::cdc2as \triangle cdc2 \triangle cdc13 \triangle cig1 \triangle cig2 \triangle puc1

The M or S decision depends on CDK activity level

cdc13::cdc2as \triangle cdc2 \triangle cdc13 \triangle cig1 \triangle cig2 \triangle puc1

Block 0 30 60 90 120 150 180 210 240 270 300 330 360

Transient inhibition of CDK activity in G2 allows resetting in G1

The minimal cell cycle is dependent upon changes in a single CDK activity

Regulation of the G2/M transition

Jamie Moseley

in collaboration with Anne Paoletti's group

at Institut Curie

Cytokinesis myosin cortical nodes

Blt1 is at myosin cortical nodes and actomyosin ring

Unlike actomyosin, Blt1 localizes to cortical nodes throughout G2

Blt1mEGFP

Both Wee1 inhibitory kinases associate with interphase nodes

Wee1 localizes to nodes

P81nmt1-GFP-wee1

wee1-3xGFP::kanMX6

Bähler and Pringle, 1998 Bähler and Nurse, 2001 C Cdr2-GFP Calcofluor wt

pom1 inhibits mitosis through cdr2 and wee1

Pom1 polar gradient through the cell cycle

Pom1 levels at cell center decrease during G2

Ectopic targeting of Pom1 to cell middle disrupts Cdr2 localization and cell cycle

Strain	Length at division (µm)
WT	14.3 ± 0.9
chimera	19.7 ± 1.9
$cdr2\Delta$	19.9 ± 1.8
$cdr2\Delta$ + chimera	19.1 ± 1.9
cdc25-22	23.8 ± 2.6
cdc25-22 + chimera	39.3 ± 7.9

Model for coordinating polarized growth with mitosis

	Cdr2	Wee1	CDK
Early G2	OFF	ON	Low
Late G2	ON	OFF	High

Combined picture of pathway linking cell size and mitotic entry

Schizosaccharomyces pombe cells

- Genome 12. 4Mb (exc rDNA)
- 3 chromosomes
- 4914 protein coding genes
- 46% have introns

Jacky Hayles

Fission Yeast Genome Wide Deletions

KRIBB Bioneer Sanger CRUK Kwang-Lae Hoe, Dong-Uk Kim Han-Oh Park Valerie Wood Jacky Hayles

Genome wide systematic deletions

Constructed in the diploid h+/h+ ade6-M210/ade6-M216, leu1-32/leu1-32, ura4-D18/ura4-D18

Universal priming sequences
Unique up & down tags

Progress to date

- Total data-set of genes: 4914 (100%)
- Deletions constructed to date: 4836 (98.5%)
- Essential genes:

1260 (26%)

Encoding a Cellular Ruler

Felice Kelly

Fission Yeast grow with a constant width

Frank Neumann

Screening for a subtle phenotype

Wild-type cells

Initial Categorization by Jacky Hayles

Directed Screen of Exponentially Growing Cells

Wide mutant cells

Genomic screen for width mutants

Genomic screen revealed a conserved pathway controlling cell width

Cdc42 is a conserved polarity regulator in all eukaryotes

- Cdc42 binds GTP (active form) or GDP (inactive form).
- Wide ranging activities include filapodia formation and polarization in mammalian cells.
- Many functions involve actin cytoskeleton polarization.

Cdc42 activators localize to the growing cell tip

5 um

GFP signal and cell shape

Negative Regulator of Cdc42 is excluded from cell tips

Pak1-mCherry (effector kinase) Rga4-GFP (Cdc42 GAP)

merge

Fluorescent protein signal

Rga4 is required for restriction of Pak1

Pak1-GFP

rga4⊿ Pak1-GFP

GFP signal

Rga4 forms a negative regulatory zone which limits cell width

Controlling Nuclear Size

Frank Neumann

Cell size and shape

DNA content

N/C ratio (fixed cells)

N/C ratio and cell cycle

Subcellular environment

proportional cell volume [μ m³]

N/C ratio perturbation

Changed N/C ratios

Systems-level study of cell size control in fission yeast

Francisco Navarro

Genome-wide screen of small size mutants

A Primary screens (on solid media) Secondary screen (exponentially growing cultures) Verification of mutants (Backcross with wt; PCR) B Coverage of the p Cell morpholog screen #1: 4660 ESSENTIAL

Coverage of the pombe genome by the primary screens

Pombe gene number: 5027

Small size mutants identified in the screen

Sys ID	Cell length (μm)	Doubling time (min)	GO_molecular function	GO_Biological Process	
SPCC18B5.03	7.4 ± 0.7	156	Protein Ser/Thr/Tyr kinase	Regulation of G2/M transition of mitotic cell cycle	
SPBC106.10	10.5 ± 0.7	157	cAMP-dependent protein kinase		
SPAC23H3.13c	10.9 ± 0.9	152	GTPase, α -subunit	cAMP-mediated signaling; negative regulation of transcription by glucose:	
SPCC1753.02c	12.7 ± 0.8	148	G-protein coupled receptor	response to osmotic stress;	
SPBC32H8.07	12.9 ± 0.9	142	GTPase activity		
SPBC1718.07c	12.3 ± 0.7	138	Protein binding	Negative regulation of mitosis; septum formation; mitosis exit; Cytokinesis checkpoint;	
SPAC1782.09c	11.9 ± 0.9	138	Protein Ser/Thr/Tyr phosphatase		
SPAC2F7.03c	12.3 ± 1.6	144	Protein Ser/Thr kinase	Activation of bipolar cell growth; regulation of cytokinesis;	
SPBC23G7.04c	12.5 ± 0.7	126	Protein kinase inhibitor	Negative regulation of mitotic cell cycle	
SPAC2F7.08c	12.6 ± 0.7	137	General RNA polymerase II transcription	Chromatin remodeling; regulation of transcription from RNA	
SPBC30B4.04c	12.9 ± 0.9	131		polymerase in promoter	
SPCC126.04c	12.7 ± 0.8	163	unknown	Chromatin modification; histone acetylation	
SPBC16E9.12c	13.1 ± 0.8	143	Poly(A) RNA binding	mRNA poly(A) tail shortening	
SPCC1919.05	12.4 ± 0.6	136	Protein binding	mRNA catabolic process; protection against dsRNA virus; 3'-5' directed mRNA degradation.	
SPBC19F8.02	12.6 ± 0.6	149	Protein binding	Cytoplasm organization	
SPAC27E2.03	12.3 ± 0.7	154	GTP binding	unknown	
SPBC16H5.07c	11.2 ± 1.0	136	Phosphoprotein phosphatase activity	Negative regulation of mitotic cell cycle; signal transduction	
SPAC26F1.10c	11.3 ± 0.6	138	Protein tyrosine phosphatase	Negative regulation of stress-activated MAPK cascade	
wt	14.1 ± 0.8	130			

Mean length=14.2m CV=6.3%

Mean length=22.6 μ m CV=7.5%

The Wee1/Cdc25 loop is essential for the homogeneity of the population

Size at division (µm)

