Population genetics of adaptation

Richard Neher, KITP, UCSB

Daniel Fisher and Boris Shraiman

Spreading of beneficial mutations

Population

Branching process: Birth rate I+s. Death rate I

Fixation probability: ~s Sweep time: ~ ln(Ns) / s

Interference between beneficial mutations

Small population: sequential innovations, rate of evolution $\sim sNU_b$

Interference between beneficial mutations

Small population: sequential innovations, rate of evolution $\sim sNU_b$

Large populations: competing mutations

Interference between beneficial mutations

Recombination accelerates evolution

Small population: sequential innovations

Large populations: competing mutations

Recombination can combine competing mutations and accelerate adaptation -BUT BY HOW MUCH?

KITP, March '10

Richard Neher

Richard Neher

"Path integral"

$$\partial_t P(x,t) = (x - \bar{x}(t))P(x,t) + r \left[\int \frac{dx_1 dx_2}{\sqrt{\pi\sigma}} e^{-\frac{(x - \frac{x_1 + x_2}{2})^2}{\sigma^2}} P(x_1,t)P(x_2,t) - P(x,t) \right]$$

-

$$\partial_t P(x,t) = (x - \bar{x}(t))P(x,t) + r \left[\int \frac{dx_1 dx_2}{\sqrt{\pi\sigma}} e^{-\frac{(x - \frac{x_1 + x_2}{2})^2}{\sigma^2}} P(x_1,t)P(x_2,t) - P(x,t) \right]$$
Selection
Recombination

$$\partial_t P(x,t) = (x - \bar{x}(t))P(x,t) + r \left[\int \frac{dx_1 dx_2}{\sqrt{\pi\sigma}} e^{-\frac{(x - \frac{x_1 + x_2}{2})^2}{\sigma^2}} P(x_1,t)P(x_2,t) - P(x,t) \right]$$

Selection Recombination

$$P(x,t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\bar{x}(t))^2}{2\sigma^2}}$$
$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2$$

$$\partial_{t}P(x,t) = (x - \bar{x}(t))P(x,t) + r \left[\int \frac{dx_{1}dx_{2}}{\sqrt{\pi\sigma}} e^{-\frac{(x - \frac{x_{1} + x_{2}}{\sigma})^{2}}{\sigma^{2}}} P(x_{1},t)P(x_{2},t) - P(x,t) \right]$$
Selection
Recombination
$$\int_{0.4}^{0.4} \frac{v = \sigma^{2}}{\sigma^{2}} \int_{0.2}^{0.4} \frac{v = \sigma^{2}}{\sigma^{2}} \int_{0.2}^{0} \frac{1}{\sigma^{2}} e^{-\frac{(x - \bar{x}(t))^{2}}{2\sigma^{2}}} \frac{\partial}{\partial t} \bar{x}(t) = \sigma^{2}$$
New mutations:
$$\frac{\partial}{\partial t} \bar{x}(t) = \sigma^{2} = NU_{b}sp_{fix}(s, r, \sigma)$$

Richard Neher

Stochastic dynamics of novel mutations

Stochastic dynamics of novel mutations

birth rate : $B = 1 + s + x - \bar{x}(t)$

death rate : D = 1

$$w(x,t-dt) = w(x,t)(1 - dt(B + D + r)) + dtB(1 - (1 - w)^2) + dt r \int K_{xy}w(y,t)$$

Stochastic dynamics of novel mutations

birth rate : $B = 1 + s + x - \bar{x}(t)$

death rate : D = 1

 $w(x,t-dt) = w(x,t)(1 - dt(B + D + r)) + dtB(1 - (1 - w)^2) + dt r \int K_{xy}w(y,t)$

comoving frame : $x \to x - \bar{x}(t)$

$$\sigma^2 \partial_x w(x) = r \int_y K_{x,y} w(y) + (x + s - r) w(x) - w(x)^2$$

Asymptotic solutions

Asymptotic solutions

Richard Neher

Self-consistent solution

$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2 = NU_b sp_{fix}(s, r, \sigma)$$

$$\frac{\partial}{\partial t}\bar{x}(t) = \begin{cases} 2s^2 \left(\frac{r}{s}\right)^2 \frac{\log NU_b}{\ln^2 r/s} & 1 \ll \frac{r^2}{s^2} \ll NU_b/\ln NU_b \\ NU_b s^2 \left(1 - \frac{4NU_b s^2}{r^2} + \dots\right) & \frac{r^2}{s^2} \gg 4NU_b \end{cases}$$

In large populations, recombination is limiting adaptation
In small population, the supply of mutations is limiting

The more recombination, the better?

Genetic interactions

So far: Fitness = # beneficial mutations

Genetic interactions

So far: Fitness = # beneficial mutations

Genetic interactions (Epistasis)

$$F(g) = \sum_{i} f_i s_i$$
 $g = \{s_1, \dots, s_L\}$ $s_i = \pm 1$

Genetic interactions (Epistasis)

$$F(g) = \sum_{i} f_i s_i + \sum_{i < j} f_{ij} s_i s_j + \sum_{i < j < k} f_{ijk} s_i s_j s_k + \cdots$$

Genetic interactions (Epistasis)

$$F(g) = \sum_{i} f_i s_i + \sum_{i < j} f_{ij} s_i s_j + \sum_{i < j < k} f_{ijk} s_i s_j s_k + \cdots$$

Allele vs genotype selection

Epistasis models

Random epistasis model

$$F(g) = \sigma \left[h \sum_{i} f_{i} s_{i} + \sqrt{1 - h^{2}} \xi(g) \right]$$

Gaussian distributed random number drawn $\xi(g)$ once and fixed for each genotype

Pairwise epistasis model

$$F(g) = \sigma \left[h \sum_{i} f_{i} s_{i} + \sqrt{1 - h^{2}} \sum_{i < j} f_{ij} s_{i} s_{j} \right]$$

 $\sum_i f_i^2 = 1 \qquad \sum_i f_i^2 = 1 \qquad \mbox{Gaussian distributed} \\ \mbox{coefficients}$

Epistasis models

Random epistasis model

$$F(g) = \sigma \left[h \sum_{i} f_{i} s_{i} + \sqrt{1 - h^{2}} \xi(g) \right]$$

 $\xi(g)$ Gaussian distributed random number drawn once and fixed for each genotype

Pairwise epistasis model

$$F(g) = \sigma \left[h \sum_{i} f_{i} s_{i} + \sqrt{1 - h^{2}} \sum_{i < j} f_{ij} s_{i} s_{j} \right]$$

 $\sum_{i} f_i^2 = 1 \qquad \sum_{i} f_i^2 = 1$

Gaussian distributed coefficients

Correlations between loci:

Dynamics of selection

Dynamics of selection

The time it takes to loose genetic diversity

Richard Neher

Dynamics of selection

The time it takes to loose genetic diversity

KITP, March, 2010

Self-consistency Condition

$$\partial_t P(A, E; t) = (F - \overline{F} - r) P(A, E; t) + r \rho(E) \vartheta(A)$$

- *E* of recombinants is a random from a Gaussian $\rho(E)$.
- A of recombinants is the marginal of P(A,E)

The success of selection

Selection on interacting clusters

Richard Neher

Collaborators

Boris Shraiman, KITP

Daniel Fisher, Stanford