The yin and yang of membrane transport

Channels diffusive, dissipative, fast

Pumps conformational, conservative, slow

KITP Evo Cell, Jan 13, 2010

Story #1: Evolutionary weirdness in membrane protein structures

An example of strange similarity: FocA

Structural alignment: FNT and AqP-family proteins

Same structure, different assembly

Even stranger - AdiC Amino acid transporter

Inverted structural repeat in AdiC: TM1- 5 / TM 6-10

Inverted structural repeat in AdiC: TM1- 5 / TM 6-10

The LeuT fold

- Gouaux, 2005 - 2009

5 + 9 architecture

TM 1-5

AdiC aligns with LeuT (aerial view)

Structural repeat aligned to 4 "unrelated" families

AdiC core aligned with Na+-coupled symporters:

Question arising: Is this strange, or not?

Common ancestors or convergent structures?

Special considerations of membrane proteins:

- * More constraints on folding in quasi 2-D
- * Reduced residue-set for lipid exposure
- * Electrostatic biases at bilayer surfaces

Ergo:

Membrane proteins should be more susceptible to structural convergence

Structural similarities of non-homologous proteins: Ranked fold-distribution

...but not so fast.....

Story #2: Break a pump – make a channel

The yin and yang of membrane transport

Channels diffusive, dissipative, fast

Pumps conformational, conservative, slow

CFTR: A channel that "should" be a pump

The "ABC" transporter family

Bare-bones ligand-activated ion channel

Bare-bones ATP-driven pump

CFTR: a channelized pump

Prediction: Violation of microscopic reversibility!

Result: CFTR violates microscopic reversibility!

Prob density function with <u>rising phase</u>

Story #3: Whoa, baby – it's a pump!

The CLC channel family 1979-2004

The CLC channel family 1979-2004

But where's the pore?

But where's the pore?

Cl-driven proton pumping: the direct demo

H⁺ pumping driven by a Cl⁻ gradient

Classical alternating-site antiporter mechanism

2004: Yin and Yang in the CLC Family

Extracellular H+ transfer

E148: extracellular H+ "gating"

E203: Intracellular H+ transfer

Bifurcated pathways for Cl⁻ and H⁺

Back to the CLC *channels*: Do the pumps tell us anything?

Fast gating in the channels:

Degraded-transporter mechanism of V-dependence

Fast gating in the channels:

Degraded-transporter mechanism of V-dependence

