
Genotype/Phenotype Modelling of 
Evolutionary Landscapes in 

Spatial Patterning

Bhavin Khatri$, Richard Sear$

and Tom McLeish*,

$Dept. of Physics, University of Surrey.
*SMPC, Departments of Physics and Chemistry and BSI, Durham 

University



Neutral

Phenomenological 
Evolutionary Landscapes

Scale?

Rugged (NK, Spin-glass)
“Mount Fuji”

Fi
tn

es
s



Questions

• What do realistic fitness landscapes look like?
– What is the importance of mapping from 

sequence to function?

• What is the important scale of fitness?
• Is there an underpinning structure to 

convergence?
– Link to ergodicity



Evolution for finite populations

• For μN<<1 evolution proceeds by sequential fixation of rarely 
occurring mutations, through combination of selection and 
randomness in birth & deaths (genetic drift)

• Probability of fixation of mutant with fitness difference δF
relative to wildtype

Lässig, BMC Bioinformatics 2007, 
8(Suppl 6):S7

Nμ = 0.05; NδF = 0.5

All A

All a

Kimura, M.
On the probability of fixation of 
mutant genes in a population.
Genetics, 1962, 47, 713-719 

Monte Carlo 
simulations



Biophysically motivated model of genotype-
phenotype map

• Pattern anterior of cellularised embryo

Gene regulation
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Fitness function of concentration 
profile

• Choose functional that selects for contrast

e.g.

Functional does not change with time 
→ Evolution in a constant environment

*
B.S. Khatri, T.C.B. McLeish and R.P. Sear, “Statistical mechanics of convergent 

evolution in spatial patterning”, PNAS, 106, 9564-9569 (2009)



Overview of Model
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Results: 
Simulations with anterior patterning functional

• Each run starts with random genome (50 binary bps ⇒ 250 points in 
genotype space) with 10^7 attempted mutations & α0=10

• Each time step a mutation in G or α - not both - α mutated continuously  
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• Bistability
• Two emergent ‘preferred’ solutions    

(α ≈7 & α ≈10)
• F(α ≈7) < F(α ≈10)



Results: Anterior Patterning
• Single global phenotype: threshold 

mechanism of co-operative binding 
of M-RNAP to P

• Critical & non critical E’s & δE’s 
→larger variation in non-critical

• α ≈7 solution substitution rate 
higher than α ≈10 indicates 
difference in local curvature and/or 
roughness
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Statistical Mechanics of the Evolution 
of Finite Populations

• In equilibrium, assuming microscopic reversibility at genotype 
level, detailed balance is obeyed

• Equilibrium distribution is Boltzmann :
• Differences in fitness δF<<1/N are neutral
• Energy function: Φ=F+S/ν (Free Fitness)

Sella & Hirsh, (2005), PNAS, 102, 9541–9546.



Free Fitness Landscape Φ(α)
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Low N, Entropy 
dominates:
Convergence to sub-
optimal phenotype

High N, Fitness 
dominates:
Convergence to high 
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The Fitness Landscape
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Ergodicity

• At low population sizes 
simulations are ergodic
(N<~100)

• 10^7 mutations can 
only explore a very 
small fraction of phase 
space (2^50)

• Underlying symmetry of 
genotype space??
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Quenched disorder at High N

0 1 2 3 4 5 6
x 10

4

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6
x 10

4

0
2
4
6
8

10
12
14
16
18
20

Non-critical energies are quenched



Landscape locally rough

F(E22,E31)

E22

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

F(E22,E31)

E22

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

0.09

0.1

0.11

0.12

0.13

0.14

0.15

High α (Rough) Low α (Smooth)

N=50



Conclusions

• Emergent complexity even for minimal genotype-
phenotype map of gene regulation
– difficult to predict a priori 2 preferred morphogen gradients

• Entropy from the genotype-phenotype map can bias 
evolution towards sub-optimal phenotypes at low 
population sizes;
– Are most organisms sub-optimally adapted?

• Quenched disorder of non-essential binding energies 
at high N
– Conservation does not necessarily imply function
– More conserved phenotypes for large populations?

Human            Octopus
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Future Work

• Expect more complicated and realistic gene 
regulatory networks may have large and non-
trivial entropic contributions to free fitness

• As combinatorial complexity increases will 
glassy nature of landscape disappear or get 
worse?

• Useful methodology for probing questions of 
robustness and evolvability, where 
robustness~entropy



Evolutionary Bottlenecks

Rugged (NK, Spin-glass)

Boundary of survival



Statistical Mechanics for Populations of 
Finite Size

• Stochastic fluctuations in gene frequencies due to randomness in
reproductive success become important at low population sizes

• Example: Two neutral alleles A and a with frequencies p and 1-p in a 
population of N individuals with asexual reproduction

Gene-frequencies 
Binomially distributed

Generation n
f(A)=p
f(a)=1-p

Generation n+1
f(A)=p’
f(a)=1-p’

Randomly sample N alleles

Wright-Fisher Process



Assumptions

• μN<<1, but N>~10
• Asexual Haploid Population
• Only point mutations (no indels, gene duplications or 

recombination)
• Cellular concentrations are large to avoid intrinsic 

noise
• Constant environment (Equilibrium)
• No competition with other species
• No spatial or geographic variation



Genotype to Phenotype Map
• Phenotype: any function of sequence
• Selection acts on phenotype
• Many to One: e.g. protein binding DNA
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2 Key Ingredients?

Map from Sequence to Function
(Genotype-Phenotype Map)

Effective Statistical Mechanics
due to finite population sizes 

(Sella & Hirsh, PNAS, 2005)

Emergent Structure & Phenomenon
Analogous to Condensed Matter Physics

Entropy Ergodicity
Glass-like 
evolution



What is Evolution?

• Life: Reproducing organism carrying 
information, e.g. in DNA, about how to 
survive in an environment

• Selection: those organisms that have the 
best information about surviving reproduce 
best/fastest (survival of the fittest)

• Mutation: random changes in information
• Mutation + Selection→ adaptation to best 

information



Very high N
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Statistical Mechanics of Finite 
Population-size Fluctuations 

Fitness
Uphill adaptation Up & Downhill steps

Large population size Small population size
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