Genotype/Phenotype Modelling of Evolutionary Landscapes in Spatial Patterning

Bhavin Khatri^{\$}, Richard Sear^{\$} and Tom McLeish^{*},

^{\$}Dept. of Physics, University of Surrey. *SMPC, Departments of Physics and Chemistry and BSI, Durham University

Phenomenological Evolutionary Landscapes

"Mount Fuji"

Fitness

Rugged (NK, Spin-glass)

Neutral

Scale?

Questions

- What do realistic fitness landscapes look like?
 - What is the importance of mapping from sequence to function?
- What is the important scale of fitness?
- Is there an underpinning structure to convergence?
 - Link to ergodicity

Evolution for finite populations

• For $\mu N << 1$ evolution proceeds by sequential fixation of rarely occurring mutations, through combination of selection and randomness in birth & deaths (genetic drift)

- Probability of fixation of mutant with fitness difference δF relative to wildtype

 φ

Kimura, M. On the probability of fixation of mutant genes in a population. Genetics, **1962**, 47, 713-719

$$(\delta F) = \frac{1 - e^{-2\delta F}}{1 - e^{-2N\delta F}}$$

Monte Carlo simulations

Biophysically motivated model of genotypephenotype map

• Pattern anterior of cellularised embryo

Fitness function of concentration profile

Choose functional that selects for contrast

B.S. Khatri, T.C.B. McLeish and R.P. Sear, "Statistical mechanics of convergent evolution in spatial patterning", *PNAS*, **106**, 9564-9569 (2009)

*

Overview of Model

Results:

Simulations with anterior patterning functional

- Each run starts with random genome (50 binary bps $\Rightarrow 2^{50}$ points in genotype space) with 10^{7} attempted mutations & $\alpha_0 = 10$
- Each time step a mutation in **G** or α not both α mutated continuously

- Bistability
- Two emergent 'preferred' solutions $(\alpha \approx 7 \& \alpha \approx 10)$
- $F(\alpha \approx 7) < F(\alpha \approx 10)$

(Monte Carlo timesteps or # mutations)

Results: Anterior Patterning

 Single global phenotype: threshold mechanism of co-operative binding of M-RNAP to P

- Critical & non critical E's & δ E's \rightarrow larger variation in non-critical
- α≈7 solution substitution rate higher than α≈10 indicates difference in local curvature and/or roughness

Statistical Mechanics of the Evolution of Finite Populations

• In equilibrium, assuming microscopic reversibility at genotype level, detailed balance is obeyed

$$p(F)\varphi(\delta F) = p(F + \delta F)\varphi(-\delta F)$$

$$\Rightarrow \frac{\varphi(\delta F)}{\varphi(-\delta F)} = \frac{p(F+\delta F)}{p(F)} = e^{\nu \delta F}$$

- Equilibrium distribution is Boltzmann :
- $k_B T' \to \nu^{-1} \approx 1/2N$
- Differences in fitness $\delta F << I/N$ are neutral
- Energy function: $\Phi = F + S/v$ (Free Fitness)

Sella & Hirsh, (2005), PNAS, 102, 9541–9546.

High *N*, Fitness dominates: Convergence to high fitness phenotype

The Fitness Landscape

H

The Fitness Landscape

A

The Fitness Landscape

The Fitness Landscape

Morphogen Gradient αL

The Fitness Landscape

The Fitness Landscape

The Fitness Landscape

- At low population sizes simulations are ergodic (N<~100)
- 10^7 mutations can only explore a very small fraction of phase space (2^50)
- Underlying symmetry of genotype space??

Quenched disorder at High N

Landscape locally rough

Conclusions

- Emergent complexity even for minimal genotypephenotype map of gene regulation
 - difficult to predict a priori 2 preferred morphogen gradients
- Entropy from the genotype-pher evolution towards sub-optimal p population sizes;

- Are most organisms sub-optimally add
- Quenched disorder of non-essential bimding energies at high N
 - Conservation does not necessarily imply function
 - More conserved phenotypes for large populations?

Acknowledgments

• The John Templeton Foundation's, Cambridge Templeton Consortium

Future Work

- Expect more complicated and realistic gene regulatory networks may have large and non-trivial entropic contributions to free fitness
- As combinatorial complexity increases will glassy nature of landscape disappear or get worse?
- Useful methodology for probing questions of robustness and evolvability, where robustness~entropy

Evolutionary Bottlenecks

Statistical Mechanics for Populations of Finite Size

- Stochastic fluctuations in gene frequencies due to randomness in reproductive success become important at low population sizes
- **Example:** Two neutral alleles A and a with frequencies p and 1-p in a population of N individuals with asexual reproduction

$$\langle p' \rangle = p$$

 $\langle (p' - \langle p' \rangle)^2 \rangle = \frac{p(1-p)}{N}$

. .

Gene-frequencies Binomially distributed

Wright-Fisher Process

Assumptions

- μ*N*<<1, but *N*>~10
- Asexual Haploid Population
- Only point mutations (no indels, gene duplications or recombination)
- Cellular concentrations are large to avoid intrinsic noise
- Constant environment (Equilibrium)
- No competition with other species
- No spatial or geographic variation

Genotype to Phenotype Map

- Phenotype: any function of sequence
- Selection acts on phenotype
- Many to One: e.g. protein binding DNA

$$p(E) \sim p(r) = \frac{1}{2^l} \binom{l}{r}$$

2 Key Ingredients?

What is Evolution?

- Life: Reproducing organism carrying information, e.g. in DNA, about how to survive in an environment
- Selection: those organisms that have the best information about surviving reproduce best/fastest (*survival of the fittest*)
- Mutation: random changes in information
- Mutation + Selection \rightarrow adaptation to best information

Very high N

Statistical Mechanics of Finite Population-size Fluctuations

Uphill adaptation

Large population size

Up & Downhill steps

Small population size