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The Eukaryotic Commandments: T. Cavalier-Smith

(i)origin of the endomembrane system (ER, Golgi and lysosomes) and coated-
vesicle budding and fusion, including endocytosis and exocytosis;

(ii) origin of the cytoskeleton, centrioles, cilia and associated molecular motors;

(iii) origin of the nucleus, nuclear pore complex and trans-envelope protein and
RNA transport;

(iv) origin of linear chromosomes with plural replicons, centromeres and
telomeres;

(v) origin of novel cell-cycle controls and mitotic segregation;
(vi) origin of sex (syngamy, nuclear fusion and meiosis);
(vii) origin of peroxisomes; (ix) origin of mitochondria;

(viii) novel patterns of rRNAprocessing using small nucleolar-ribonucleoproteins
(snoRNPs); (x) origin of spliceosomal introns.
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Fig. 1. The bacterial origins of eukaryotes as a
two-stage process.
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environments by substituting prenyl ether lipids for
the ancestral acyl esters and making new acid-
resistant flagellar shafts (Cavalier-Smith, 2002a).

At the same time, eukaryotes converted the
glycoprotein wall into a flexible surface coat and
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form the first aerobic eukaryote and protozoan,
around 850 My ago.
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T. Martin Embley & William Martin

Eukaryotic evolution, changes and challenges

Nature 2006,
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Figure 1| The gencral outline of cukaryote evolution provided by rooted
rRMA trees. The tree has been redrown and modified from ref. 92, Until
recently, lineages branching near the root were thought to primitively lack
mitochondria and were termed Archezoa®. Exactly which archezoans
branched first is not clearly resolved by rRNA data®, hence the polytomy
imore than two branches from the same node) involving di plomonads,
parabasalids and microsporidia at the root. Plastid-bearing lineages are
indicated in colowrs approximating their res pective pigmentation. Lineages
furthest away from the root, including those with multicellularity, were
thought to be the latest-branching forms and were sometimes misleadingly
i see ref. 60) called the ‘crown’ groups,
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Fig. 3. Major transitions in evolution of the endomembrane system. In prokaryotes, secretion is a comparatively simple matter of translocation
of polvpeptides across the plasma membrane. Although there are several distinct mechanisms for achieving this, all appear to require an
unfolded substrate for translocation. The type L SRP/SecY-mediated. pathway is homologous to the co-translational ER impont pathways of
enkarvotes. In the hypothesized LCEA, comparative genomic evidence suggests that the major structures and pathwavs constituting the
endomembrane system were already present. including the ER, Golgi complex and the main features of the endocytosis and recyeling systems.
The paralogous relationship of the families of SNAREs, Rabs, SM proteins and GTFPases, as well as the homology of many coal components to
each other and also to components of the nuclear pore complex. provide a potential mechanism for how this system arose.
Compartmentalization and gene family expansion led to establishment of multiple protein systems capable of deforming membranes (1.e.
transport steps b, Elaboration of this basic pattern has been a major driving force for subsequent diversification of the endomembrane system,
giving rse to the array of systems present in extant taxa. Subsequent evolution yielded multiple modes of endocyiosis, specialized exocytic
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vacuole; LCEA, last common eukarvotic ancestor. Small numbers in red indicate an associated pathway-specific Rab protein. The grey
structure in the prokaryote indicates the non-compartmentalized genome.
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Figure 1| Pathways of entry into cells. Large particles can be taken up by phagocytosis, whereas fluid uptake occurs by
macropinocytosis. Both processes appear to be triggered by and are dependent on actin-mediated remodelling of the
plasma membrane at a large scale. Compared with the other endocytic pathways, the size of the vesicles formed by
phagocytosis and macropinocytosis is much larger. Numerous cargoes (TABLE 1] can be endocytosed by mechanisms that are
independent of the coat protein clathrin and the fission GTPase, dynamin. This Review focuses on the clathrin-independent
pathways, some ofwhich are also dynamin independent (FICS 2,3). Most internalized cargoes are delivered to the early
endosome via vesicular (clathrin- or caveolin-coated vesicles) or tubular intermediates (known as clathrin- and dynamin-
independent carriers{CLICs)) that are derived from the plasma membrane. Some pathways may first traffic to intermediate
compartments, such as the cavecsome or glycosyl phosphatidylinesitol anchored protein enriched early endosomal

compartments (GEEC), en route to the early endosome.
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Figure 1| Pathways of entry into cells. Large particles can be taken up by phagocytosis, whereas fluid uptake occurs by
macropinocytosis. Both processes appear to be triggered by and are dependent on actin-mediated remodelling of the
plasma membrane at a large scale. Compared with the other endocytic pathways, the size of the vesicles formed by
phagocytosis and macropinocytosis is much larger. Numerous cargoes (TABLE 1] can be endocytosed by mechanisms that are
independent of the coat protein clathrin and the fission GTPase, dynamin. This Review focuses on the clathrin-independent
pathways, some ofwhich are also dynamin independent (FICS 2,3). Most internalized cargoes are delivered to the early
endosome via vesicular (clathrin- or caveolin-coated vesicles) or tubular intermediates (known as clathrin- and dynamin-
independent carriers{CLICs)) that are derived from the plasma membrane. Some pathways may first traffic to intermediate
compartments, such as the cavecsome or glycosyl phosphatidylinesitol anchored protein enriched early endosomal

compartments (GEEC), en route to the early endosome.
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Clathrin-dependent endocytosis

Morone and Kusumi 14



Clatnrin Adaptor
triskelia complex 2
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Figure 3 Core components of the machinery driving clathrin-mediated endocytosis.
Clathrin triskelions, composed of three clathrin heawy chains {CHC) and three tightly
associated light chains (CLC), assemble into a polygonal lattice, which halps to deform
the overlying plasma membrane into a coated pit. Heterotetrameric AP2 complexesare
targeted to the plasma membrane by the o-adaptin subunits, where they mediate
clathrin assembly through the 82-subunit, and interact directly with sorting motifs on
cargo molecules through their p2 subunits. Dynamin is a multidomain GTPase that is
recruited o the necks of coated pits, where it can assemble into a spiral or ‘collar’ to
mediate or monitor memorans fission and the release of CCVs (see 2 for detaiis). A
subsequent uncoating reaction recycles the coat constituents for rause.
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Cargo Recognition
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Cargo Recognition

(&) Cross-section of a clathrin-coated vesicle showing the major
interactions involved in cargo sorting. The atomic structures corre-
spond to the N-tzminal domain of clathrin {recd) making contact
with the clathrin box {black) at the flexible g-hinge fgresn) betwesn
the C-tzrminal ear and M-terminal trunk igrayi of g-adaptin. The AP -
core cartains o (yellow), n2 forancel, and the M-terminal head of
a-adaptin {dark blugl. The a-ear iz depictad in the back of the core
flight Eluz), The positions of ears and hinges are not known with
certairiby.

(B} Bottom view of the AP-2 core seen from the plane of the mem-
Brane.

(C) Several side views of the core inthe inactive or elosad conforma-
ticn, rotatechwith respect to an axis perpendicular to the membrans
fyellow ). The crientation of the core is as proposed by Collins et al.
(2002 it locates the bindirg site in a-adaptin ired) for the phosphate
groups of the membrane-bound phosphoinositides {light red) onoa
osition close to the inner leaflet of the membrans (yellow].

(07 The Ypp& soting motif (red) within different locations in the
cytosolic tail of transmembrane cargo proteins igray) can make
contact with the C-terminal domain of w2; depicted are possible
differant active or open conformatiors, from partial =t to tatal
frichit) extensicn. When totally extendsd, a region of p2 waould alsc
interact with a second membrans-Eound phosphoincsitide.

Owens et al, Cell 2004

Figure 1. Coat Formation and Camo Recognition
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Figure 1. Coat Formation and Cargo Recognition
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Capturing Cargo

Transferrin
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Clathrin-Coated Membrane Skeleton
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Figure 33. Clathrin-coated pits (CCPs) tend to form repeatedly at certain locations in
the membrane. The transmembrane protein transferrin receptor and the cytoplasmic
adaptor protein AP2 were visualized at the single molecule level to elucidate the dynamics
of CCP formation.
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Construction of a clathrin pit
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Scission Mechanisms:

Dynamin-dependent endocytosis
O
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New Model for Dynamin
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‘What about memr Iiids/ lipid t

Morone & Kusumi, Membrane Organizer Project; pers. Comm.
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Phagocytosis Macropinocytosis
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GPI-anchored proteins
~10% of all membrane proteins
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GPI-anchored proteins are selectively endocytosed into distinct endosomal

compartments called 'GEECSs' *
- I.'l_ .t."‘ 1 ..! NBD'SM
& ; e A T
. 1
= :
£ = ! =
h Y
S
<
' : !
Y. s - Rob Parton- Univ.
'y . Queensland

Sabharanjak et al. Dev. Cell, 2002



