Evolution of a Complex Adaptation Through Neutral / Deleterious Intermediates
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Fitness: 1 1-s; 1-s; 1+s,

A Three-site Model

Michael Lynch, Indiana Univ Jan 11, 2010 KITP Evo Cell Program
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« Small population sizes — adaptation proceeds in a stepwise fashion, which can
necessitate a sojourn through a mean-population fitness bottleneck.
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» Large population sizes — intermediate deleterious alleles need never be fixed,
but are kept at low frequencies by selection-mutation balance, serving
as launching pads for final adaptation.



Evolution of a Complex Adaptation Through Neutral Intermediates
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Frequency of d-step alleles at time t = (ut)d

Selection takes hold when the
frequency reaches 1/(4Ns.,)

Effective Population Size

» Small population size — rate of adaptation is

nearly independent of complexity because
the larger number of steps is compensated
by the larger number of paths.

 Large population size — rate of adaptation is
inversely proportional to the mutation rate per
site, not the product over all sites.

» As the number of steps increases, the
relationship between N and the rate of
adaptation becomes progressively flatter.

« With an evolvable mutation rate, the time to
adaptation at small N will be reduced
(not shown).



Evolution of a Complex Adaptation Through Deleterious Intermediates

Small populations:

Rate of establishment = 4N d!(u/s1)%(s2/s1) intermediate steps are effectively neutral.
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107
deleterious first-step alleles have

half lives of 1 / s, generations, and
must acquire d-1 additional mutations
for adaptation prior to elimination, so
the rate scales with (u/s,)q.
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Recombination can facilitate the arrival of the adaptive allele,
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and / or inhibit the fixation of the adaptive allele,



Influence of the Recombination Rate When Intermediate-state Alleles Are Neutral

Small N — recombination
has no effect.

Moderate N — weak recombination leads to
a small improvement in the rate of adaptation.

|

Large N — recombination
can strongly impede
fixation of the adaptive
allele.
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» There is a threshold recombination rate, approximately equal to the selective advantage of
of the adaptive allele, beyond which the rate of adaption is inhibited.

* This effect is diminished in populations of small size and with weak selection.
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Connecting back to biological reality.....



The Per-generation Mutation Rate Is Inversely Proportional to the
Average Effective Population Size of a Lineage

Base-substitutional Mutation Rate

(x 109/ generation)
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» Both estimated slopes = -0.60, but true values must be closer to -1.0.
 For equivalent effective sizes, mitochondrial rates are ~150x higher.
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Mitochondrial genes: Piganeau and Eyre-Walker (2009)



Two Genetic Perils of Evolving Multicellularity

Slope = -1.0 . .
® Uni/ oligocellular species

® |nvertebrates
® \/ertebrates
® Angiosperms

Microbial
.o eukaryotes

Freshwater
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. Mammals

Recombination Rate per Kilobase

(Finlay 2002, Science)
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Reduction in absolute Reduced recombination
population size per physical distance



Estimates of the ratio of the power of mutation (2u) to the
power of random genetic drift (1/2N) obtained from standing
population-level nucleotide heterozygosity at silent sites.
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