Mechanics of Contractile Actomyosin Networks

Margaret Gardel Yvonne Aratyn-Schaus, Todd Thoresen, Venkat Maruthamuthu, Michael Murrell

University of Chicago Physics Department, Institute for Biophysical Dynamics

Cells in Our Body are Mechanical Machines

Time scale: 20 min- 5 hr

10 μm

Move, Apply Force to Environment Change Shape Withstand force to create sheetsmuch more

DW1 Cytoskeleton determines physical behaviors of cells

Contractile Bundles

DW2

(Cramer)

<u>Network</u>

(Hartwig)

Protrusive Network

(Svitkina)

Cyotskeletal Building Blocks

Polymers

Polymer Cross-linkers

Molecular Motors

Polymer Assembly

How do these proteins build (active) materials required for cytoskeletal machines?

Contractile Actomyosin Cytoskeleton

Actin Filaments Myosin-II Motors α-actinin crosslinks

Focal Adhesions >100 structural/signaling proteins

Focal Adhesions and kinetichores

Dynamic polymer

Complicated Attachment (tension sensing?)

Force application

Actomyosin Cortex

Different boundary conditions from adherent cortex

Are there common rules of self-assembly of actomyosin that can govern Self-assembly?

Any cell that doesn't have a wall likes to have this cortex

Myosin Mechanochemistry and Assemblies

X

公

Feedback between Forces and Actin Cytoskeleton

Impacts: Proliferation, Migration, Gene Expression, Differentiation,

•What regulates whether you get an extending or contractile bundle

- Is passive crosslinker required for contraction?
- •How does structure depend on tensile forces?

What rules govern self-assembly of actomyosin bundles?

- In cells
- In purified proteins

Myosin-II ATPase inhibitor dynamically regulates contractile phenotype

Control

+ 25 μM Blebbistatin 30 min

15 min after Removing BLEB

Actin Paxillin Myosin Light Chain

Blebbistatin Washout Drives Self-Assembly of Bundled Actin

Myosin Dynamics Drive Remodelling

Control

GFP-myosin light chain

Dynamics and Structure during Remodeling

I. Short time scale Motion Dynamics

II. Long time scale bundle formation

How do these relate to tension build up?

High Resolution Traction Force Microscopy

10-20 μ m thick polyacrylamide gel 40 nm far red latex spheres

Traction Stress Reconstruction

Strain Field, U

Stress Field, F

$$U_{\alpha k} = G_{\alpha \beta k i} F_{\beta i}$$
$$F_{\beta i} = \operatorname{argmin} \left(\left\| U_{\alpha k} - G_{\alpha \beta k i} F_{\beta i} \right\| + \lambda \left\| F_{\beta i} \right\| \right)$$

Sabass, Gardel et. al. Biophys. J 2007

Traction Stress Increases as Bundles Form

Minimal Change in Structure during first 30 seconds

Traction builds and F-actin flow slows

Force-velocity of lamellar F-actin Cytoskeleton

1. Myosin II mechanochemistry

	Cell	In Vitro
v _u	108 nm/s	~100 nm/s
σ_{stall}	50 Pa	
F _{stall}	5 pN	2 pN

 $V_{1} = -V (1 - \sigma / \sigma)$

2. Active Liquid Crystal Models (Julicher/Prost)

Nonlinear Force-velocity Relationship

How do changes in structure correlate to tensile stress build up?

Order Parameter?

α -actinin tracks formation of bundled F-actin

Control

Density of bundled F-actin Increases

Large clusters of closely packed α -actinin puncta form as traction builds

SMALL CLUSTERS

LARGE CLUSTERS

Assembly of space-spanning contractile bundles Correlate to traction build up

Physical Parameters guiding cellular traction

Low tension

Homogeneous F-actin network Force is inversely correlated to movement of F-actin + myosin

High tension Remodeling into contractile actomyosin bundles Force is proportional to contraction

Substrate Sensing

Interplay between internal drag and strain sensitivity of actomyosin bundles

→ Need Model System to isolate parameters

Dynamics of *in vitro* Actomyosin Bundles

Expansion

Taiguchi, 2004

Contraction

Mizuno, 2004

Passive cross-linker required for contraction of gels

Free boundary conditions \rightarrow stress fibers have fixed boundary conditions

Construction of *in vitro* Actomyosin Bundles

F-actin

Add ADP-myosin

ATP-dependent remodeling

Perfuse 100 mM ATP

Myosin Concentration Regulates Contractility

Low Myosin

00:00

Why do these structures always contract?

Contractile Remodeling

Rupture + Snaps

Slack, Stable Bundles

Contractile Remodeling

Contracts 30% of length!

Contractile Remodeling

Ruptured snaps

→Tension + Length dependent contraction?

Compaction of F-actin and Myosin During Contraction

Myosin

F-actin

Model Contractile Cortex

Could we make an in vitro cell Divide?

Questions

•Actin-myosin structures are stable under high tension, rapidly remodel under low tension

•What physical parameters are important for regulating force transmission and ability to remodel dynamically?

•Similarities between microtubule/motors versus actin/motor protein assemblies?

- •Are some extensile?
- •Some contractile?

•Are there similar design principles of cytoskeletal assemblies among diverse sets of proteins that are used to in dynamic biological matter?