Targeting 2 distinct membranes: the case of tethering factors and lipid transporters

Guillaume Drin, CNRS

KITP Evo Cell, Feb 2, 2010

Vesicular transport

adapted from Bonifacino JS & Glick BS. Cell. 2004

Vesicular transport

adapted from Behnia R, Munro S Nature. 2005 438:597-604

An important concept: membrane identity

1st landmark: small GTPase

from Behnia R, Munro S Nature. 2005 438:597-604

An important concept: membrane identity

2nd landmark: membrane composition (phosphoinositide)

from Behnia R, Munro S Nature. 2005 438:597-604

A third landmark: membrane shape (curvature)

200 nm

Curvature programs COPI depolymerisation by ArfGAP1

Detection of membrane curvature by ALPS motif

The **unusual polar face** of the ALPS helix could explain its ability to recognize membrane curvature

Detection of membrane curvature by ALPS motif

Detection of membrane curvature by ALPS motif

Is the motif ALPS present in other proteins?

.....we found **nothing else** than ArfGAP1

Physico-chemical properties are important, not key residues

ALPS motif / Screening by bioinformatics

The N-terminus of GMAP-210 is an ALPS motif

GMAP-210 binds to Arf1 with a C-terminal GRAB domain

Model for asymetric tethering

Asymetric tethering between a curved membrane and a flat one displaying Arf1(GTP)

Model on the GMAP-210 function

Pernet-Gallay K. et coll, 2002

Tethering factors / Evolution of endomembrane system

from Dacks JB, Peden AA, Field MC. Int J Biochem Cell Biol. 2009 41(2):330-40

Tethering factors / Evolution of endomembrane system

Tethering factors / Evolution of endomembrane system

A evident variation : length of the central coiled-coil region Various golgin appear not well-conserved

Evolving ideas about tethering factors

A new feature: multiple binding-sites within golgin for small G proteins

Tentacle model

<u>Length + diverse binding-sites</u>: to create tethering factors able to deal with the increasing complexity of endomembrane system

Distribution of various binding-sites (hook) in space

Organisation of vesicular trafic from and to Golgi apparatus in space and time Sorting

Processive transport

Control of membrane flux and of Golgi architecture

Biochemical evidences about tethering

→ Can we analyse this complex tethering system

Reality

Lifetime, dynamic of tethering event

Strength of interaction

Number of tethers involved in a tethering event

To monitor tethering in vitro with better accuracy, we need to:

- control membrane identity
- quantify the connection of two membranes
- control aggregation

Asymetric tethering / Controlling the membrane identity

GTPase are perimembranar protein: binding is dynamic

Control identity during tethering

- Quick mixing of liposomes with the tethering factor
- Chemical anchoring of GTPase to membrane
- Biochemical control of GTPase by GEF/GAP

Asymetric tethering / Controlling the membrane identity

Asymetric tethering - Self-organisation by Arno, ArfGAP1 and membrane curvature

New technical approach : FCCS

Quantify the connection of two distinct membranes

New technical approach: FCCS

New technical approach: FCCS

Controling aggregation

→ can we mimic what is done in cells?

Orci L, Perrelet A, Rothman JE. Proc Natl Acad Sci U S A. 1998 95(5):2279-83.

Vesicular transport / Non-vesicular transport

Vesicular transport

Non-Vesicular transport

A sterol-transporter : Kes1p

Sterol Gradient

Kes1p is likely designed to ensure vectorial transport

Acknowledgments

IPMC

Bruno Antonny
Vincent Morello
Jean-François Casella
Romain Gautier
Joëlle Bigay
Danièle Stalder
Hélène Barelli

CCMA – UNSA NICEPierre Gounon

ANR / RISC (CNRS)