The mechanics of cell growth

Arezki Boudaoud Department of Biology, Ecole Normale Supérieure de Lyon, France

Outline

- Introduction: an atlas of shape
- Fission yeast: Minc et al. 2009–
- Plant cells (Arabidopsis): Hamant et al. 2008–

★Non walled cells

★Walled cells - A stiff casing

- Bacteria peptidoglycan
 Archea various polymers (aminoacids + sugars)
- Fungi chitin
- Plants and green algae cellulose
- Diatoms (not relevant here) silica

Halobacteria

Haloquadra walsbyi

Methanopyrus kandleri

Deinococcus radiodurans

Treponema pallidum

E. coli

B. subtilis

K.D. Young 2006

FIG. 1. Variety of prokaryotic shapes. This collage of different cells, unless otherwise stated, is constructed from descriptions and illustrations given by Starr et al. (313) or by Zinder and Dworkin (380). The cells are drawn to scale. Those in the dashed black circle are drawn relative to the 5-μm line. These same cells are included in smaller form in the dashed blue circle to compare their sizes to those of larger bacteria, which are drawn relative to the 10-μm line. (A) *Stella strain* IFAM1312 (380); (B) *Microcyclus* (a genus since renamed *Ancylobacter*) *flavus* (367); (C) *Bifidobacterium bifidum*; (D) *Clostridium cocleatum*; (E) *Aquaspirillum autotrophicum*; (F) *Pyroditium abyssi* (380); (G) *Escherichia coli*; (H) *Bifidobacterium* sp.; (I) transverse section of ratoon stunt-associated bacterium; (J) *Planctomyces* sp. (133); (K) *Nocardia opaca*; (L) Chain of ratoon stunt-associated bacteria; (M) *Caulobacter* sp. (380); (N) *Spirochaeta halophila*; (O) *Prosthecobacter fusiformis*; (P) *Methanogenium cariaci*; (Q) *Arthrobacter globiformis* growth cycle; (R) gram-negative *Alphaproteobacteria* from marine sponges (240); (S) *Ancalomicrobium* sp. (380); (T) *Nevskia ramosa* (133); (U) *Rhodomicrobium vanniellii*; (V) *Streptomyces* sp.; (W) *Caryophanon latum*; (X) *Calothrix* sp. The yellow-lined background orb represents a slice of the giant bacterium *Thiomargarita namibiensis* (290), which is represented to scale with the other organisms.

Penicilium

Chlamydomonas reinhardtii

★A wide occurrence of rod-like shape

★Constraints?

- Nutrients => surface/volume
- Adhesion to substrate
- Resistance (motile)
- Exploration of space (non motile)
 Partition of material between daughter cells

★Stiff casing

★Growth into rod-like shape● Turgor pressure

Outline

• Fission yeast: Minc et al. 2009– What are the forces involved?

• Plant cells (Arabidopsis): Hamant et al. 2008– How is anistropic growth controlled?

and let to grow.

The fission yeast *Schizosaccharomyces pombe*, is a model system for studying mechanisms of polarized growth. Cell polarity is dynamically regulated by the microtubule and actin cytoskeletons

Top view of fission yeast cells trapped in the chambers

(a)

 $F_{ch} = \frac{8}{3} E_{ch} R d$

Ech (Mpa): 1.56

0.68

0.16

 $d = (E_{cw}h)\frac{3\pi^2}{8}\frac{1}{(D)}$ $F_B = \frac{\pi I E_{cw}}{E_{cw}h^2} \frac{\sigma_{cw}}{2}$ $J = \pi h R^3$

Other fungis:

- S. cerevisae : 100 Mpa (by micromanipulation) and 0.9 Mpa (by AFM)????

- Aspergillus nidulans: 60-100 Mpa (AFM)

Plants : -Root hair (Arabidopsis): 500 Mpa

Bacteria:

- E.coli: 25 Mpa
- B subtilis: 13-25 Mpa

If the cell is growing under an ex(ter) al torger F, the tension in the wall is reduced:

$$T = T_P - \frac{F}{2\pi Rh}.$$

$$v(F) = v_0 \left(\frac{F}{P_0} = \frac{T_F}{P_0S}\right) \frac{F}{2\pi Rh}$$

$$v(F) = \frac{R}{\tau_V} \frac{T}{E}$$

 $P_0=1.2 \pm 0.1$ MPa.

Work in progress -Characterise mutants -Cell division

Marga et al. 2005

Introduction – Building the structure

Gutierrez et al. 2009

Control of CMT direction?

Playing with CMTs

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

P. Krupinski and H. Jonsson

Conclusion

• Two strategies for anisotropic growth softening the tip => tip growth reinforcing

• Plant development: cellular level <=> morphogenesis

Plant cells

Francis Corson ENS Paris, now Rockefeller University

Olivier Hamant and Jan Traas INRA and ENS Lyon

Yves Couder and Steffen Bohn Université Denis Diderot Paris

Elliott Meyerowitz Marcus Heisler Caltech Caltech, now EMBL

Numerical collaborations Pawel Krupinski and Henrik Jonsson

Lund University

Starting collaboration with Laboratoire Joliot Curie

Fission yeast

Nicolas Minc Columbia University

Fred Chang Columbia University