The mechanics of cell growth

Arezki Boudaoud
 Department of Biology, Ecole Normale Supérieure de Lyon, France

Outline

- Introduction: an atlas of shape
- Fission yeast: Minc et al. 2009-
- Plant cells (Arabidopsis): Hamant et al. 2008-

Introduction

\star Non walled cells
*Walled cells - A stiff casing

- Bacteria peptidoglycan
- Archea various polymers (aminoacids + sugars)
- Fungi chitin
- Plants and green algae cellulose
- Diatoms (not relevant here) silica

Introduction

Introduction

Halobacteria

Methanopyrus kandleri

Introduction

Deinococcus radiodurans
reponema pallidum

K.D. Young 2006

FIG. 1. Variety of prokaryotic shapes. This collage of different cells, unless otherwise stated, is constructed from descriptions and illustrations given by Starr et al. (313) or by Zinder and Dworkin (380). The cells are drawn to scale. Those in the dashed black circle are drawn relative to the $5-\mu \mathrm{m}$ line. These same cells are included in smaller form in the dashed blue circle to compare their sizes to those of larger bacteria, which are drawn relative to the $10-\mu \mathrm{m}$ line. (A) Stella strain IFAM1312 (380); (B) Microcyclus (a genus since renamed Ancylobacter) flavus (367); (C) Bifidobacterium bifidum; (D) Clostridium cocleatum; (E) Aquaspirillum autotrophicum; (F) Pyroditium abyssi (380); (G) Escherichia coli; (H) Bifidobacterium sp.; (I) transverse section of ratoon stunt-associated bacterium; (J) Planctomyces sp. (133); (K) Nocardia opaca; (L) Chain of ratoon stunt-associated bacteria; (M) Caulobacter sp . (380); (N) Spirochaeta halophila; (O) Prosthecobacter fusiformis; (P) Methanogenium cariaci; ratoon stunt-associated bacteria; (M) Caulobacter $\mathrm{sp} .(380) ;(\mathrm{N})$ Spirochaeta halophila; (O) Prosthecobacter fusiformis; (P) Methanogenium cariaci;
(Q) Arthrobacter globiformis growth cycle; (R) gram-negative Alphaproteobacteria from marine sponges (240); (S) Ancalomicrobium sp. (380); (Q) Arthrobacter globiformis growth cycle; (R) gram-negative Alphaproteobacteria from marine sponges (240); (S) Ancalomicrobium sp . (380);
(T) Nevskia ramosa (133); (U) Rhodomicrobium vanniellii; (V) Streptomyces sp.; (W) Caryophanon latum; (X) Calothrix sp. The yellow-lined background orb represents a slice of the giant bacterium Thiomargarita namibiensis (290), which is represented to scale with the other organisms.

Introduction

Introduction

Courtesy J. Dumais

Chlamydomonas reinhardtii

Introduction

\star A wide occurrence of rod-like shape
\star Constraints?

- Nutrients => surface/volume
- Adhesion to substrate
- Resistance (motile)
- Exploration of space (non motile)
- Partition of material between daughter cells

Introduction

\star Stiff casing
\star Growth into rod-like shape

- Turgor pressure

Introduction - Structure

Introduction - Structure

Introduction - Structure

Introduction - Structure

Outline

- Fission yeast: Minc et al. 2009What are the forces involved?
- Plant cells (Arabidopsis): Hamant et al. 2008How is anistropic growth controlled?

Fission yeast

Coverslip

Cells are trapped in the microhole and let to grow.

The fission yeast Schizosaccharomyces pombe, is a model system for studying mechanisms of polarized growth. Cell polarity is dynamically regulated by the microtubule and actin cytoskeletons

Fission yeast

Fission yeast

Fission yeast

Fission yeast

Fission yeast

$\mathrm{E}_{\text {fission yeast }}=100 \pm 30 \mathrm{MPa}$

Other fungis:

- S. cerevisae : 100 Mpa (by micromanipulation) and 0.9 Mpa (by AFM)????
- Aspergillus nidulans: 60-100 Mpa (AFM)

Plants :

-Root hair (Arabidopsis): 500 Mpa
Bacteria:

- E.coli: 25 Mpa
- B subtilis: 13-25 Mpa

Fission yeast

$$
T_{P}=\frac{P R}{2 h} \quad v_{0}=\frac{d L}{d t}=\frac{R}{\tau_{V}} \frac{T_{p}}{E}=\frac{P}{\tau_{V}} \frac{R^{2}}{2 \sigma_{c w}}
$$

If the cell is growing under an external force F , the tension in the wall is reduced:

$$
\begin{aligned}
T & =T_{P}-\frac{F}{2 \pi R h} . \\
v(F) & =v_{0}\left(\frac{P}{P_{0}}-\frac{F}{P_{0} S}\right)
\end{aligned}
$$

Fission yeast

(b)

(c)

(d)

Force, $\mathrm{F}(\mu \mathrm{N})$

Fission yeast

Work in progress
-Characterise mutants
-Cell division

Introduction - Structure

Marga et al. 2005

Introduction - Building the structure

Gutierrez et al. 2009
Control of CMT direction?

Playing with CMTs

Grandjean et al. 2004

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

Mechanical forces and CMTs patterns

Alignment in the direction of maximal force

Elongated organs and boundaries

P. Krupinski and H. Jonsson

Conclusion

- Two strategies for anisotropic growth softening the tip => tip growth reinforcing
- Plant development: cellular level <=> morphogenesis

Plant cells

Francis Corson

ENS Paris, now Rockefeller University
Olivier Hamant and Jan Traas INRA and ENS Lyon

Yves Couder and Steffen Bohn Université Denis Diderot Paris

Experimental collaborations
Elliott Meyerowitz
Marcus Heisler
Caltech
Caltech, now EMBL

Numerical collaborations Pawel Krupinski and Henrik Jonsson Lund University

Starting collaboration with Laboratoire Joliot Curie

