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Post-Modern Cosmology

GALAXY EVOLUTION a, _
CONTINUES...
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Why look beyond SCM?

= Why do physics?
= Can measure parameters but interesting in so far
as we learn new things
We are not curing cancer
Our goal is new knowledge for its own sake
= Cosmology already amazingly refined

» Model works brilliantly
But some potential holes

Important to know whether and how can be
accommodated

| briefly mention one



Precision Cosmologial
Measurements

» Local measurements: 74.03 km/s/Mpc £1.42 vs
CMB +BAO alone: 67.66 + 0.42

= 4.40, 9 % difference
= Challenging to resolve in expected theories

= Why pursue?
Has become stronger with time
Why measure unless a possibility for unexpected?

= What | show here

We find field-theoretically consistent potentials with
correct behavior
That we can track explicitly
With full data sets, H, up to 72.3 (at 2 sigma)
Future measurements will definitely have the last word




What i1s Hubble Tension
and Why Worry?

With CMB and SN alone
can fit with late physics
Difficult however to fit
(low z) BAO as well
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How to Proceed?
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Riess et al. (2018)
provides a direct
measurement of the
current Hubble rate.

Other measurements
require knowledge of the
baryon-photon sound
horizon, r,.

/ Time of baryon decoupling






Cosmic Microwave Background

The CMB primarily
measures angles on the
sky.
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Assuming a late-time P il N
: e
cosmology, can infer 7, Ny

from 6., = j 9



BAOQO Calibrated with CMB

Riess et al. (2018)

Distance ladder

BOSS DR12
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BOSS data points on this
plot use CMB-measured
value of the sound
horizon as calibration
H 1s function of time
Feeds into all the
measurements




Instead Calibrate BAO with
local distance ladder

BAO compatible with

. local H, measurement
Distance ladder with a smaller baryon-
photon sound horizon.
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Baryon-Photon Sound Horizon

= Hubble rate at early times.

Or sound speed
-very unlikely

New question:
Different Hubble rate
before recombination
and still match other

data?




Possible energy injection

S ha pe : Alireza Hojjati!, Eric V. Linder!?, Johan Samsing®
Constraint on injection from
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= Explicitly accomplish goal
= Allows you to check if it works

Background
Fluctuations

» Challenge:

Speed of Transition

Energy that is present too early or too late
problematic

Need well Localized to Matter-Radiation,
Decoupling on Tail




.

Agrawal, Cyr-Racine, Pinner, LR

Note energy densities separately conserved

Implies energy injection when

Most straightforward: wg=-1 initially
Field frozen

Find scalar potential with wg>w, once field starts
moving



» Search for:
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= Gives potential and its

d e rlvatlve 1+ ws = a*H?*(9,0)?/ ps, we can extract formulae for V(o) and .o

Yields power law potential:
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This is asymptotically rolling
This potential can have oscillating solutions too
And those can also be of interest
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When both exist, rocking solution more stable

> 1/(n+1)

Furthermore energy dissipates more quickly

Challenge for rapidly oscillating is to track
increasingly rapid oscillations

In practice cut off by dark energy domination
and early stage most important

But averaging (as done before) inadequate



Stability of fluctuations
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For wg < 21+ wy — (1 4+ wy) /2, these solutions are oscillatory, and their envelope redshifts as
a—2—=ws)/4 while the rolling solution redshifts as a—3(w¢—w&)/2 Thus the fluctuations grow relative

to the rolling solution for 1 > w, > (14w} )/2, corresponding to 2 < n (1 —wy) < 34wy and coinciding




Fluid and Model Disagree
Even when we try...
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Asymptotes to
constant w

Or averages to
constant w
Will get cutoff
when

wp, becomes -1
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orresponding to the limit 7 — o0. In this case, the field ¢ depends logarithmically on a,
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solution even with the back-reaction included. This trajectory corresponds to an exponential potential,

Q

) A= \,."3(1 + wp) (1 + I;ﬂ) (we = wp).
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n this solution.

Ui‘ (&) 9 .

W . 5:,_1 — wy ),
s an (1) constant, as for the non-oscillatory solutions discussed in the previous subsection. These
xponential potentials have previously been studied in the context of quintessence models (see [30] for
review). However, since wy = wyp, the energy injection for this potential does not redshift relative to
he background (see figure 1), which prevents these solutions from being ideal candidates to resolve
he Hubble tension. Therefore we will focus on the case of monomial potentials at finite »n for the

remnainder of the paper.




0.08

I A\."‘ﬂ_ ! '?dmg J’ ?rq
0.074 ‘ f r
— n=2 \
I )
0064 —— n=3 | [ I\
........ — ! [
3 0.05 =4 ]
2~ | Planck + BAO + SHOES + P:mthi 7 \ \
= 0.041 N Y
;E'- .. ' l'
< 0.03 ‘ ' ’ |
NI
0.02 N FooLt
- J (l;.' .
0.014 /\/,»"\./ V ' | RN
N _'/‘\ 1 .-'-\.\\
0,00 +F== et 2 i
10! 10- 10° 104

wel z)

1.00 I.lvf;r.'L‘l f ;- — n=2
0.75 fllwl }‘MH T.'l ' ' l," | . j —_— n=3
(AT R =
|,l_'2::v "f ’ '“ N I j || | |
0.00 1\ llf lll ||I ' :
—0.251 ¢ -'I # .H | I
—“E:_‘ |“| “ A } '.\. 'l' || | | \\\
o LTS N
10} 102 10° 104

Figure 3. Left panel: Energy injection profile for the best-fit models for each value of n as a function of

redshift. Results are shown here for the data combination “Planck + BAO + SHOES + Pantheon”.

For

reference, we also show the amount of energy injected as compared to standard ACDM for the best fit N.g
model using the same data combination (corresponding to AN _g = 0.27). To guide the eye, we have indicated
by vertical dashed lines the matter-radiation equality and baryon drag epochs in the standard ACDM model.

Right panel: The scalar field equation of state as a function of redshift for each value of n.




Compare to Neutrinos:
Results without Riess

Planck + BAO + Panth
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Figure 7. Normalized Ho posteriors obtained using the data combination “Planck + BAO + Pantheon”, that
is, without including the local Hubble constant measurement from ref. [3].



n =

n

n

Planck + BAO + SHOES + Panth

H 0 I l'(l]];

Tdrag [M P '3'I

1 I rR—T
o l:LEG‘ 0.12 016

I

w8 pm
Tdrag [Mpe] fa

I

1 1 .l 1 1 1 1
0135 080 082 084 08 08 g8 W 72 4
g Hy[km/s/Mpc|

Figure 2. Marginalized posterior distributions for V o ¢*" models for three different values of r2. Results are

shown here for the data combination “Planck + BAO + SHOES + Pantheon”.
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Figure 6. Comparison between the » = 2 model, the N_g extension of the standard cosmological model,
and plain ACDM. All posterior distributions shown here were obtained using the data combination “Planck

+ BAO + SHOES + Pantheon”.




100 Qp,h? 2.238 () 236) 001 2 261 (,2 "4) +0.021 S
0.1180 (0.1177) £0.0012
1.0420 (1.0422) +0.0003

0.819 (0.819) 7507 |
e 0.302 0.209 (0.293) *o 00
Tdrag [Mpc] 147.6 (147.7) £0.3 143.2 (142.9) 723 5.1 (151) £15

Ho [km/s/Mpc] 68.2 (68.3) £ 0.5 70.1 (70.5) *10 69.7 (70.2) £ 1.1

Table 1: Mean values and 68% confidence intervals for key cosmological parameters using the data
combination “Planck + BAO + SHOES + Pantheon”. The numbers in parentheses are the best-fit
values for each model.




Compare fluctuations

Datasets ACDM | n=2 n=3 n=4 Neog
Planck high-¢ | 2448.6 | 2449.3 | 2447.3 | 2446.2 | 2449.2
Planck low-¢ | 10495.6 | 10494.4 | 10494.9 | 10495.6 | 10495.0

Planck lensing 9.3 9.9 10.2 9.2 10.1

BAO - low 2 1.9 1.8 1.4 1.8 2.7
BAO - high 2 1.8 1.9 1.9 1.8 2.0

Pantheon 1027.1 | 1027.0 | 1027.1 | 1027.0 | 1027.2

SHOES 10.3 3.5 6.5 7.4 4.2
Total x2 . 13994.7 | 13987.8 | 13989.2 | 13989.0 | 13990.3
Ax2Z. 0 6.9 -5.5 5.7 -4.4

: ~ 9 . . o« e . . .
Table 1: Best-fit y= values for each individual dataset used in our cosmological analysis.




d4model the best of our models
With funny initial conditions
Neutrinos most natural
But doesn’t agree at high |

Fluid models agree better
Faster drop off
No oscillations

But not obvious which models they match to
Certainly nothing obvious

Already a stretch...



Kamionkowski et al
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Lessons

= There are better models

= But they are hard to find
Fluid approximation gives a good model
But it's not exactly the model they say

Without scanning through actual potential, can’t
even trust that it works at all




Other Lessons

= We want
Cosmologically reasonable
Field theoretically reasonable

= Cosmologically: need energy injection to happen at M/Rad
equality scale

» Field theory:
Why cos3? Eg dropping phi?, phi4
f~0.15; where cos turns over to power law and 10% detuned from
peak region
Smaller f: tachyon develops in fluid
Larger f: power law model
Very sensitive to higher order terms
See whole potential
More generally shape sensitivity
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= Getrid of oscillation
By fiat!

To make these considerations concrete, conside
class of potentials:

Aom, ¢>0,

V(¢
(@) 0. 6<0.

Then for ¢ > 0

_ m(m —1)
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= (learly could be systematics
= Will be important to see how measurements of H evolve

= Byt also late time studies
BAO
Large scale structure

og is worse (bigger): A, n, increased to absorb damping tail,
(increase H, more diffusion, less power high I), p,, bigger, but Q,,
smaller

Lyman,
= Ultimately we want to know is energy density of universe
what we think it is

= So far, the jury is out
= Which is a nice time for theorists




