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Part I: “Classical”



Black hole binary inspirals

Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
is experimentally relevant (LIGO/VIRGO,...)
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Even for v <1 | the non-linear nature of GR makes this a difficult problem, involving a hierarchy
of length scales

Gravitational radius: 7", = QGNM
J Tg~Tsg>T > A
Physical radius: TS(: g for BH) 5
T~ Tg/v
Orbital scale: T 3
A~ r/v ST U
Radiation wavelength A / g /

\ 4
“correlated scales”

Experiments will be sensitive to at least 2)6 =“3PN” corrections beyond Newtonian gravity (Thorne
et al 1994). (5PN considered feasible). Numerical GR results also motivate computing higher order
corrections.



Tower of gravity EFTs:
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IR matching

€« 7)o = 7“5/"“(2 "“9/7“7 BH)

IR matching

«—— 1 =714/7(=v?,NR case)

IR matching

ne = r/A(= v, NR case)

————
n3s = ry/ A= v>, NR case)

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in EEF'1'; 1 1 corresponds to IR effect in EEF'T;



Finite size effects:

What can we learn about the internal structure of compact objects from
binary inspirals at LIGO?

In the inspiral phase, binary constituents can be treated as point-like.
Finite size effects encoded in an worldline EFT coupled to gravity

DOFs: 4
z*()\) = worldline CM coordinate
el_1 5 3(A) = local frame (SPIN)

Symmetries:

Diff. invariance z* — z* + £*(x)

€a=1,2,3

Worldline RPI A= N(N)

Local SO(3) rotations acting on
(for BH only) e* ©



EFT for gravity coupled to BH, in the point particle limit: (h=rc=1)
(mpy = 1/(327G))

Sen = —2mpy / d*z\/gR(x) S =Sgn + Spp

The most general (mod. e.o.m’s) point particle Lagrangian consistent with
symmetries (ignoring spin, assume parity invariance), organized in a
derivative expansion:

Spp = —m/dT-l-CE/dTEWEW—I—cB/dTBWBW_|_...

—— e
0(°g)

O(0%g)
_ e _ :
w/ B, = R,08v v = “electric” curvature tensor
1 JoJNNe" oA —_ . 9
B, = 5 Eupo AUV Ryq = “magnetic” curvature tensor

(Note: 0O(8%g) terms, eg /dTgWRW are redundant due to source free
eom R,, =0).



The curvature couplings

Spp D CE/dTEWEW—I—CB/dTBWBW

describe the ¢ =2 linear tidal response of the compact object to external
gravitational fields.

E.g, Newtonian spherical self-gravitating star (radius g ). No external
gravitational field:

d =0 Qij = /dgfp (ximj — trace) =0

Turn on weak external perturbation:

o 2,
vr0 I I
Ei; — 0,0,

w/ dimensionless (gravitational) “Love number” k£ ~ (9(1) that depends
on fluid eqgn. of state.



In the point particle EFT, the induce quadrupole moment is:

0 R5
0Q;; = 5E”Spp = —2cpli; vs.  5Q; = —§k‘ G—NE
ij

so we expect on dimensional grounds:

Cp R5/GN

Same scaling also holds for relativistic (compact) objects. Eg elastic
graviton+BH scattering amplitude: (r,w <« 1)

— Tsf(TSCU)

Full theory: 7.4 =
w/ \w

5
== C[ B NTS/GN
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EFT: from matching
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Given that cgp ~ R5/GN, we expect finite size/tidal corrections to
potentials and radiation to scale as

| R\° R\’ 4
Tidal effects ~ | — — | — X U
T Ts

which is formally a 5PN effect. Specifically

Black hole: R = r, ==  Tidal effects at 5PN

Enhancement
Neut tart; ~
eutron star R~ O(10) X r, == by a factor of ~ 10°

(Flanagan+Hinderer, 2007)

(in fact the NS/NS inspiral event GW 17087 at LIGO has already placed
very crude constraints on the neutron star tidal coefficients...)



For neutron stars, cg depends on the EOS and has been calculated
numerically in (Flanagan+Hinderer, 2007)

For the case of Schwarzschild black holes in d = 4, the tidal response in
the full theory RW/ — () has been computed analytically by

Damour+Nagar, 2009
Binnington+Poisson, 2009

Kol+Smolkin, 201 |
Steinhoff et al 2013

while the EFT side corrections were shown to vanish in Kol+Smolkin,
2011. The result for BHsind = 4

BH _ _BH _
cp =cg =0

so no (static) tidal response at £ = 2 (and likely also for ¢>2 ...)



BH absorption and Compact Binaries

The results on tidal coefficient suggests that finite size effects are absent for
black holes.

But formalism outlined so far neglects dissipation, ie absorption of energy and
angular momentum by the compact objects themselves.

On general grounds, dissipation implies the existence of low frequency modes
with @ ~wew (eg NS: hydro modes,.... BH: horizon absorption) not
captured by the point particle EFT

Spp = _m/dT—I—CE/dTEWEW—I—CB/dTBWBW+...



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
modes labeled by SO(3) . In this case there are some zero modes:

Mode Freq. J¥
m(\) 0 0
$”()\) 0 1T

w@-j()\) (spin) 0 1™



there are also an infinite tower of “quasinormal modes”...

n|é&=2 =3 =4

0 | 0.37367 -0.088961 | 0.59944 -0.092701 | 0.80918 -0.094161
1 | 0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.28443 1
2 | 0.30105 -0.478281 | 0.55168 -0.479091 | 0.77271 -0.47991 1
3 | 0.25150 -0.705141 | 0.51196 -0.690341 | 0.73984 -0.68392 1

Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole

for £ =2,3, and 4 [135]. The frequencies are giwen in geometrical units and for
conversion into kHz one should multiply by 2w (5142H =) x (M /M).

(from Kokkotas and Schmidt, gr-qc/9909058).

which are increasingly

“broad resonances,’ rather than

“quasiparticles’:
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Schwarzschild QNMs for ¢ = 2,3

(Berti et al CQG (2009)):




Even though the form of the internal spectrum depends on the details of the
internal structure, can incorporate the effects of dissipation in a model
independent w/o the need to explicitly track the light DOFs

The idea is to treat the compact object as R — 0 as an “atom”, i.e a worldline
with local operators coupled to gravitons.  For a spherical symmetric object,
the leading interactions with gravitons take the form

St =~ [ drNQENE™ (@) ~ [ dr(NQE N B (z).

With operators (N, Q¥(\) ... acting on the Hilbert space of
internal states. These are gravitational analogs of the EM dipole interaction

—

Hem:_ﬁ'E

Microscopic properties are then encoded in the correlation functions
<QE,B o QE,B>

which can be related to observable quantities of the compact object.



Example: Graviton absorption and power dissipation

Consider an compact object of mass M . Graviton absorption amplitude in the object’s rest
frame:

iA(gn(k) + M — X)) = (X|Te ") @Hint |k b M)

~ —/dt(X]Q;Ej(t)|M><O|EZ-j(t, 0)|k, h) + (E <> B)

absorption cross section is

Oabs(w) = lim — Z|A )+ M — X)|?

then, assuming unitarity (even for BHs!):

D1 X)(X[ =1

/dte_iwt@j(k)%s( )[<M|Q .(0) Z(t)\M> + (M|Q;.(0) ﬁ(t)\Mﬂ»

#

Oabs (W) —

w3

2
SMmp,

where the 2-pt. correlators are in the initial state of the compact object

(QF(0)Q7(27)) = (M|Q™(0)Q" («")| M)

(alternatively, initial state could be mixed/thermal)



Matching to the full theory

For the case of black holes, the low frequency o,4s(w) can be calculated analytically, by finding the
graviton wavefunctions in the BH background:

_ d2
BH Mty = (_d 2t VE(T)) Ry(r) = w’Ry(r)
A (:E) _ o iwt RE(T) Yﬂm(ﬂ) ' T f(@ + 1) 3T
- ro W(T):(1_7)< 2 r?»)
BCs for scattering; Schrodinger eqgn for radial modes

=“Regge-Wheeler” eqn.
Vis(r7)

—twr™

Re(r = rs) = T(w)e

44—

*

—00 (r*=r+rslnjr/rs —1|) T — 00

(QNMs: Same eqn. but purely outgoing bc’s at the horizon and infinity)



These absorption coefficients were computed by Page (1975) for massless particles of arbitrary
spin in the case of Kerr black holes:

( A, s=0
2TM?2, s=3

-2
O'(QJ) TW Z swimp w-po < iA(3M2_ az)wz’ S-—'—l
\.5'6"'14(5M2 + 2M?a®+ a*)w?, s=2.

Using his result we can match the two-point functions in the case 5 = 2

. 1 2
/dte"’wt<M|Q;Ej’B(t)QkEl’B(OHM) — §A+(w) (5ik5jl + 04101 — §5ij5kl> 7

_ CUS rsW 4
and Oﬁgsz(w) = 4m%l A+(W) ~ 47T7€ [( 45) O(Tsw)6]
§)
]. T _ W )

Ai(w>0) = e 25 | O(rswg).

Ai(w<0)=0 IF NO EMISSION FROM BH




The same two-pt. function that controls BH absorption also shows up in BH-BH binary dynamics
Using the NRGR formalism, this is given by the box diagram with potential exchange

1

~
'

—

Leprlar, xo] = 'l +(1<2)+---

‘_I"f"—

N
’

§(GNm2)2/dtdt/qz'j %12 (0)](Qi (1) Qi (")) qra[x12(t)] + (1 <> 2),

(qij[x] = 9;0;|x|™")
Absorption power spectrum:

2 dw dP APy, 1 Gy — o2 (w)

“Iml. = | —=— abs _ _ ~ abs 2 (a) 2

T et w dw — dw T 6472 o w? Maldi; (W)
NOTE: Valid also for NS. Contains info about
EoS

16 32 v? X - Vv)?
Paps = =G ymim; Zmiqu)qu) = —Gym°p® ( — + 32 10) .
2 £ 3 x] x

(in agreement with Poisson (1995) in the extreme mass limit m1 > my)

8
Note: Pabs/Pquad ~ U

is a (small) 4PN effect. Absorption enhanced to v° for rotating black
holes (see Porto; Endlich+Pencco for EFT description)



Real part of effective action/box diagram: Leads to finite size corrections to two-body eqns of
motion. To ensure causal result must compute using IN-IN formalism. The appropriate response
function is then the Retarded Green’s fn.

. 1 2
Gijors (8) = =0 (M[Q5(1), Qr (0)]|M) = S G (1) (67;r6j5 + 63507 — 55@-@) .
Eg, tidal response to applied E-field:
(Qi; (1)) = —2¢cpE;;(t,0) +/ dt' G, (t — ) Ens(t',0),

— 0

so in frequency space,

* du Ay (W) = Ay (—)

27T w—w 4+ 1€

“dynamical Love number”



In the classical case (no emission) A, (—|w|) =0 we reproduce the full theory
result on the vanishing of the BH Love number by fine tuning the counterterm cg

*dw Ay (w) 4 [ oups(Ww)

R 0 .o =0= - - T T O d
€ Cp (w )’classzcal CE /O D2 W CTYN 0 N W

After tuning away the static part, the classical response function is then

irSw
CE(W)’classical — 360GN T O(T?WQ).

The fact that  [meg (w) # 0 is consistent with the dissipative effects discussed
earlier.



Open questions:

How to use this formalism to go beyond LO in absorption (relevant for LIGO templates;
see Poisson et al)?

Role of higher-order correlation fns? (QE’B e QE7B>

Incorporating quantum effects, e.g Hawking radiation? VVhat does EFT say about interactions
of BH with soft radiation, eg.

Soft photon theorem for electrically neutral BHs

iA :\Q/ n \C>/ ]
Quantum BH scattering (in soft/eikonal limits).

— 2. (BH |

— ~
ke ’
\
3 b SN
5T &




Part |I: Quantum



