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Time delay cosmography

e Past: Introduction and recent results
e Present: Current works in progress

e Future: Further improvements and forecasts
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Time-delay Cosmography

Courtesy: Martin Millon

* Time-delay distance




Necessary data for time-delay distance

* Time delay measurement

e High resolution imaging of the

lens

measurement
Time delay distance:
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e Kinematics
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e Estimate of line-of-sight effects



HOLICOW sample of 6 time-delay lenses
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Latest “blind” measurement from HOLICOW:
2.4% measurement of Hg

probability density
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Time delay cosmography

e Present: Current works in progress



Two more time-delay lenses from
STRIDES collaboration

DES J0408-5354 DES J2038-4008

Independent analysis by 2 teams to check for systematics:
* Shajib et al. (UCLA)
* Yildirim, Wong et al. (MPA Garching, NAOJ)

Stay tuned for new Hpmeasurements from these two in Fall 2019.



Projected 2% measurement of Ho from
8 lenses

 Would reach comparable precision with the cosmic
distance ladder method.

* Confirming or alleviating the tension



Lens systems can be complex.

DES J0408-5354

Nearby satellite
Multiple sources
Additional image

Line-of-sight
perturbers



Behind the scene of lens modeling

Reconstructed:
Data: 3-band nulti-band
. Reconstructed:
DatarsilpJgTIe band single band

Recons-
tructed
source

Mass




Time delay cosmography

e Future: Further improvements and forecasts



Future goal is 1% Ho measurement.

Two ways to improve precision:
e Increase sample size

e Improve precision per system



Way 1: Increasing
sample size

Lens discoveries

Doubles
40+ Quads

Number

1980 1990 2000 _ 2010 2020
Year

Data courtesy: Lens DB by Cameron Lemon

We have already
discovered enough

guasars to reach 1% in Ho.

From HST Cycle 25
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Shajib et al. 2019a
From HST Cycle 26

a0

...and 15 more to be observed.




Automating the lens modellin

4 ..
a. Initial setup
Data cutout
PSF initialization
\_ Mask setup

b. Fit 'most informative' band

Lens mass: PEMD
Lens light: Elliptical Sersic
Source Light: Sersic

PSO

y = 2 fixed

PSF reconstruction

€. Add satellite mass profile

No

i. Fit all bands simultaneously

PSO

y relaxed

PSF reconstruction

A

Satellite mass: IEMD
Satellite light: Elliptical Sersic

g. Add extra source component

1

f. Extra
source
component or
structure?

d. Satellite
to add?

Y

if first time then

Source component profile: Sersic
else

Add shapelets

if n,,, <3 then

n

max = 3
else
n

Nyayt 2

max ~ “'max

h. Add shapelets to source light
profile

1. Add second Sersic profile to

Yes lens light profile

K. Unaccounted
lens flux?
Lens light: Double Elliptical Sersic

if n,, < 10 then

Nax = 10

else

Nax = Npax 5

m. Run MCMC

n. Finish

Shajib et al. 2019a



Automated lens models
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Future work in automated lens
modelling

 Machine learning for initializing
lens models

e Work by Vedant Sahu,
UCLA undergraduate

e Automating line-of-sight
perturber selection



Improving Precision Per System

Time delay distance:

DES J0408-5354

Ry Shajib++2019 Shajib et al. (in progress)

Spatially resolved kinematics improves precision on
the mass profile slope.



Spatially resolved kinematics helps determine Hoto
1% from a sample of 40 lenses.
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Flux (arbitrary unit)
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Novel lensing analysis for general
elliptical mass profiles

Deflection potential Surface density
qg=0.38

e Elliptical mass profiles

are analytically difficult
for lensing.
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General analytical framework through
concentric Gaussian decomposition

al(x’y)

a(x,y)

Shaijib 2019b

e \Works for any elliptical mass profile. Only three times slower than the simplest
profiles in use.

e Allows to pin-down systematics from lens-model choices by exploring more general
or empirically-motivated mass profiles.

¢ Readily pluggable to Jeans anisotropic modeling of kinematics.



Summary

» 2.4% measurement of Hp from 6 lenses so far,
analysis of 2 more lenses are in progress.

 Future directions:

« Automated lens modelling for large samples

« Spatially resolved kinematics will improve
precision per lens

* 1% Ho measurement forecasted from ~40 lenses



Thank you!



