flat Λ CDM

$flat - \Lambda CDM$

Towards 1% Ho measurement with time-delay cosmography

PhD Candidate & Dissertation Year Fellow University of California, Los Angeles

Advisor: Tommaso Treu

Collaborators: Simon Birrer (UCLA), Adriano Agnello (ESO),

STRIDES and H0LiCOW collaborations.

Time delay cosmography

- Past: Introduction and recent results
- Present: Current works in progress
- Future: Further improvements and forecasts

Time delay cosmography

- Past: Introduction and recent results
- Present: Current works in progress
- Future: Further improvements and forecasts

Time-delay Cosmography

Courtesy: Martin Millon

Time-delay distance

$$D_{\Delta t} = (1 + z_{\rm d}) \frac{D_{\rm d}D_{\rm s}}{D_{\rm ds}} \propto \frac{\Delta t}{\delta \Psi} \propto \frac{1}{H_0}$$

Necessary data for time-delay distance measurement

Time delay distance:

Time delay measurement

- Estimate of line-of-sight effects
- High resolution imaging of the lens
- **Kinematics**

H0LiCOW sample of 6 time-delay lenses

Suyu et al. 2010

Suyu et al. 2014

Wong et al. 2017

Birrer,..,Shajib et al. 2019

Rusu,..,Shajib et al. 2019

Chen,..,Shajib et al. 2019

Latest "blind" measurement from H0LiCOW: 2.4% measurement of H₀

Wong,..,Shajib et al. (2019)

Time delay cosmography

- Past: Introduction and recent results
- Present: Current works in progress
- Future: Further improvements and forecasts

Two more time-delay lenses from STRIDES collaboration

Independent analysis by 2 teams to check for systematics:

- Shajib et al. (UCLA)
- Yildirim, Wong et al. (MPA Garching, NAOJ)

Stay tuned for new H_0 measurements from these two in Fall 2019.

Projected 2% measurement of H₀ from 8 lenses

- Would reach comparable precision with the cosmic distance ladder method.
- Confirming or alleviating the tension

Lens systems can be complex.

- Nearby satellite
- Multiple sources
- Additional image
- Line-of-sight perturbers

Behind the scene of lens modeling

Data: 3-band

Reconstructed: multi-band

Data: single band

Reconstructed: single band

Lensed host galaxy

iterative reconstruction

Reconstructed source

Mass

Time delay cosmography

- Past: Introduction and recent results
- Present: Current works in progress
- Future: Further improvements and forecasts

Future goal is 1% H₀ measurement.

Two ways to improve precision:

- Increase sample size
- Improve precision per system

Way 1: Increasing sample size

Data courtesy: Lens DB by Cameron Lemon

We have already discovered enough quasars to reach 1% in H_0 .

From HST Cycle 25

Shajib et al. 2019a

From HST Cycle 26

...and 15 more to be observed.

Automating the lens modelling

Automated lens models

Future work in automated lens modelling

- Machine learning for initializing lens models
 - Work by Vedant Sahu,
 UCLA undergraduate
- Automating line-of-sight perturber selection

Improving Precision Per System

Time delay distance:

$$D_{\Delta t} = \frac{c\Delta t}{\Delta \Psi} \left(1 - \kappa_{\text{ext}} \right)$$

Spatially resolved kinematics improves precision on the mass profile slope.

Spatially resolved kinematics helps determine H₀ to 1% from a sample of 40 lenses.

Stellar kinematics from Keck/OSIRIS

Data

Integration time: 4 hours

Target: 8 hours

Shajib et al. (in prep)

Novel lensing analysis for general elliptical mass profiles

 Elliptical mass profiles are analytically difficult for lensing.

$$\alpha(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \, \kappa(\boldsymbol{\theta}') \, \frac{\boldsymbol{\theta} - \boldsymbol{\theta}'}{|\boldsymbol{\theta} - \boldsymbol{\theta}'|^2}$$

 No general solution for three decades...until now.

Deflection potential Surface density

General analytical framework through concentric Gaussian decomposition

- Works for **any** elliptical mass profile. **Only three times slower** than the simplest profiles in use.
- Allows to pin-down systematics from lens-model choices by exploring more general or empirically-motivated mass profiles.
- Readily pluggable to Jeans anisotropic modeling of kinematics.

Summary

• 2.4% measurement of H_0 from 6 lenses so far, analysis of 2 more lenses are in progress.

Future directions:

- Automated lens modelling for large samples
- Spatially resolved kinematics will improve precision per lens
- 1% H₀ measurement forecasted from ~40 lenses

Thank you!