Turning Gravitationally Lensed Supernovae into Cosmological Tools Steve Rodney

U. of South Carolina

Steve Rodney (UofSC)

а

b

Time

H_0 measured to 2.4%, combining 6 lensed QSOs from H0LiCOW, each with ~6-10% precision. Wong+ 2019

Plausible *H*⁰ precision from a single well-observed GLSN : ~7%

See talk by Anowar Shajib after the break

1. Measuring time delays : SNTD

- 2. Time delay cosmography with SN Refsdal
- 3. How to find the next one

1. Measuring time delays: SNTD

2. Time delay cosmography with SN Refsdal

3. How to find the next one

1. Measuring time delays: SNTD

2. Time delay cosmography with SN Refsdal

3. How to find the next one

1. Measuring time delays: SNTD

2. Time delay cosmography with SN Refsdal

3. How to find the next one

SNTD : The open-source toolkit for SN Time Delay measurement

Justin Pierel (UofSC)

Steve Rodney (UofSC)

Pierel & Rodney 2019, ApJ, 876, 107.

pip install sntd

sntd.readthedocs.io

Quasar light curves are stochastic and unpredictable...

(most) SN Light curves are fast, simple, and predictable

Steve Rodney (UofSC)

Pierel & Rodney 2019

SNTD multiband light curve fitting: measure time delays even if we miss the peak

Arbitrary Units) ×n₄ Scaled ³ (Ħ ication 1.02 1.00 Magnifi 0.98 0.96

Early color curves of SNIa can be insensitive to microlensing

Steve Rodney (UofSC)

Time since Explosion (Days)

Goldstein+ 2018

SNTD "color curve" method:

Measure time delays directly from color curves

0.1 20 0.2 B-R Rest Frame E 0.5 0.6

0.0

Steve Rodney (UofSC)

Pierel & Rodney 2019

Precision of ±3 days is achievable with well-sampled light curves

Steve Rodney (UofSC)

mean = 60.1 { discovered σ = 3.2 { before peak mean = 58.0 { discovered

 $mean = 58.0 \begin{cases} discovered \\ after peak \end{cases}$

true time delay = 60 days

Pierel & Rodney 2019

Turning SN Refsdal into a Cosmological Tool

10″

First attempt: precision of 2 to 7 days for images S1–S4

Time delays with the full light curves of all 5 images

- Apply four time delay fitting methods
- Measure each method's accuracy and precision using simulated data
- Combine results using image-by-image weights

Steve Rodney (UofSC)

Kelly ... SR et al. in prep

		0.7 -
Netnod 1:		0.6 -
piecewise		0.5 -
polynomials		0.4 -
P. Kelly	Flux	0.3 -
		0.2 -
		0.1 -
		0.0 -

-0.1

Method 2: PyCS Splines V. Bonvin

Steve Rodney (UofSC)

Bonvin+ 2017

	—— Intrinsic variatio	ons (model)		
	• S1			<u> </u>
	• S2			
	• S3			
	• S4			
	• SX			
00	57000 57200 HJD - 2400000	57400 .5 [day]	57600	5

Method 3: GPR S. Thorp K. Mandel

Method 4: SNTD (parameterized) J. Pierel S. Rodney

	27.0-	F125W
(parameterized)	27.2 -	
J. Pierel	27.4 -	
S. Rodney	Magnitude 5.45	
	₩ 8 _{27.9}	
	28.4 -	
	29.1 -	
	31.8	00

We define weights for each method by comparing performance on simulated light curves (with blind Δt and μ offsets)

Accuracy in fitting 10² simulated light curves: **S2-S1** 10¹ **10**⁰ -30

0.06 0.05 Probability - 70.0 - 70 0.02 0.01 0.00

anticipated Error Budget for H₀ from SN Refsdal Best Case Time Delay Measurement 2% Primary lens model 3% Line of sight 2% Cluster Multi-plane Effects 0%fACDM parameters 3%

in fACDM with uniform priors $H_0 \in [20, 120]$ km s⁻¹ Mpc⁻¹ and $\Omega_m \in [0, 1]$ see Grillo...SR et al. 2018

Take-home message:

We have measured the time delay for SN Refsdal with a precision of ~2%

This will deliver the first GLSN measurement of H0, with a precision of ~7%

H_0 measured to 2.4%, combining 6 lensed QSOs from H0LiCOW, each with ~6-10% precision. Wong+ 2019

Plausible H_0 precision from SN Refsdal : ~7%

90

1. Why use GLSN?

2. Measuring time delays: SNTD

with SN Refsdal 10⁻¹ ر م 2⁸ 10 10⁻³ 10⁻⁴ 0.5 0.0 1.0 z_s

3. Time delay cosmography 4. How to find the next one

Two ways to find a rare lensed transient event

Wide-field sky survey

Targeted
Search

Rapid, wide-field sky surveys: get a bigger haystack.

Haystacks, End of Summer - Claude Monet, 1891

ZTF should find a handful, LSST will find hundreds

Only a small fraction will be suitable for time delay cosmography

Goobar+ 2017

Targeted Search : to find a needle, look in the sewing kit

High-z Lensed Galaxies have High Star Formation Rates

High SFR = High SN Rate

Liverpool Telescope Strongly Lensed SN Discovery Survey PI: Ismael Perez-Fournon

r_{lim} ~ 23.5 AB mag

with HST: $m_{10\sigma} \sim 26.5 \text{ AB}$

Probability of detecting at least one gISN in a 1-year survey:

• 2m: m_{lim} ~ 23.5 p~20% • 8m: m_{lim} ~ 24.5 p~50% • HST: m_{lim} ~ 26.5 p~95%

- Why use GLSN? They have natural strengths for time delay cosmography.
- 2. Measuring time delays: SNTD is designed to leverage those strengths.
- SN Refsdal is delivering a time delay measurement <2%, will deliver H0~7%
- 4. Expect a handful more by 2025, hundreds by 2030

Some questions to answer while you're waiting for the next GLSN...

- How can we (really) use GLSN to reduce lens model degeneracies?
- How precise can spectroscopic time delay measurements be?
- How well can we measure time delays from *unresolved* GLSNe?
- How can we mitigate microlensing uncertainties for Core Collapse SNe?