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γ̂(ℓ) =

(
ℓ21 − ℓ22 + 2iℓ1ℓ2

|ℓ|2

)
κ̂(ℓ) = e2iβ κ̂(ℓ) , (12.19)

where β is the polar angle of the vector ℓ; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
γ̂(ℓ)γ̂∗(ℓ′)

〉
= (2π)2 δD(ℓ − ℓ′)Pκ(ℓ). (12.20)

Hence, the power spectrum of the shear is the same as that of the surface mass density.

12.3.1 Shear correlation functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ (i.e. the polar angle of the separation
vector θ) is used to define the tangential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i≠j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
,χ

)
. (12.16)
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γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through
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|γ̄|2
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(θ) =
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2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,
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|γ̄|2

〉
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1
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N∑

i≠j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
,χ

)
. (12.16)
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γ̂(ℓ) =

(
ℓ21 − ℓ22 + 2iℓ1ℓ2

|ℓ|2

)
κ̂(ℓ) = e2iβ κ̂(ℓ) , (12.19)

where β is the polar angle of the vector ℓ; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
γ̂(ℓ)γ̂∗(ℓ′)

〉
= (2π)2 δD(ℓ − ℓ′)Pκ(ℓ). (12.20)

Hence, the power spectrum of the shear is the same as that of the surface mass density.

12.3.1 Shear correlation functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ (i.e. the polar angle of the separation
vector θ) is used to define the tangential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i≠j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that
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∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =
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0
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c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
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)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that
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)
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1. Shape measurements
• Measure ellipticity and correct for PSF on pristine pixel data through


• Brightness moments


• Model fitting


• Calibrate biases (noise bias, model bias) to ~1% (0.1%) with


• Image simulations, machine learning


• Shearing of the images/models (Metacalibration)


• Check for residual biases via 


• Star-galaxy cross correlation functions


• B-mode tests
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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2. Redshift calibration
• Re-weight spec-z surveys to be more representative.

• Magnitude space needs to be fully covered.

• Requires unique relation colour-redshift relation.

• Requires extremely reliable spec-z.

Hildebrandt et al. (2017)



2. Redshift distributions

Hildebrandt et al. (2018)

σ<z>=0.039 σ<z>=0.023 σ<z>=0.026

σ<z>=0.012 σ<z>=0.011
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
D
⇠̂±

E
= ⇠± + ⇠

II

± + ⇠
GI

± , (6)

where ⇠
II

± measures correlations between the intrinsic ellip-
ticities of neighbouring galaxies (known as ‘II’), and ⇠

GI

±
measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,

PII(k, z) = F
2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z) ,
(7)

where the redshift and cosmology-dependent modifications
to the power spectrum are given by

F (z) = �AIAC1⇢crit
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Here AIA is a free dimensionless amplitude parameter that
multiplies the fixed normalisation constant C1 = 5 ⇥
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� Mpc3, ⇢crit is the critical density at z = 0,
and D+(z) is the linear growth factor normalised to unity
today. The free parameters ⌘ and � allow for a redshift and
luminosity dependence in the model around arbitrary pivot
values z0 and L0, and L̄ is the weighted average luminosity
of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as
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where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
D
⇠̂±

E
= ⇠± + ⇠

II

± + ⇠
GI

± , (6)

where ⇠
II

± measures correlations between the intrinsic ellip-
ticities of neighbouring galaxies (known as ‘II’), and ⇠

GI

±
measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,

PII(k, z) = F
2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z) ,
(7)

where the redshift and cosmology-dependent modifications
to the power spectrum are given by

F (z) = �AIAC1⇢crit
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Here AIA is a free dimensionless amplitude parameter that
multiplies the fixed normalisation constant C1 = 5 ⇥
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� Mpc3, ⇢crit is the critical density at z = 0,
and D+(z) is the linear growth factor normalised to unity
today. The free parameters ⌘ and � allow for a redshift and
luminosity dependence in the model around arbitrary pivot
values z0 and L0, and L̄ is the weighted average luminosity
of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as
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where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
D
⇠̂±

E
= ⇠± + ⇠

II

± + ⇠
GI

± , (6)

where ⇠
II

± measures correlations between the intrinsic ellip-
ticities of neighbouring galaxies (known as ‘II’), and ⇠

GI

±
measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,

PII(k, z) = F
2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z) ,
(7)

where the redshift and cosmology-dependent modifications
to the power spectrum are given by
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luminosity dependence in the model around arbitrary pivot
values z0 and L0, and L̄ is the weighted average luminosity
of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as
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where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
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where ⇠
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measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,
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of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as
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where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with

MNRAS 000, 1–49 (2016)



4. Baryon feedback

Chisari et al. (2019)



KiDS:  Kilo Degree Survey DES: Dark Energy Survey

HSC:  Hyper-Suprime Cam SurveyStage III Surveys



KiDS:  Kilo Degree Survey DES: Dark Energy Survey

HSC:  Hyper-Suprime Cam SurveyStage III Surveys
VIKING



DES-Y1

Troxel et al. (2018)

DES: 1/3 of the data, half depth 
KiDS-450: 1/3 of the data, full depth, optical-only



HSC-DR1

Hikage et al. (2019)

HSC: 1/10 of the data, full depth
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Hildebrandt et al. (2018)

KV450: 1/3 of the data, full depth, optical+IR
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Hildebrandt et al. (2018)



Spectroscopic calibration of 
DES-Y1

Joudaki et al. (2019), arXiv:1906.09262

Caveat: Re-weighting done in 4D only.
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Problems with the redshifts
• Calibration with photo-z (e.g. COSMOS-2015):

• Outliers => underestimate <z>

• Bias => underestimate <z>


• Calibration with spec-z:

• Magnitude-space coverage => underestimate <z>

• Uniqueness of colour-redshift relation => underestimate <z>

• Wrong spec-z => <z> drawn to the mean of all spec-z


• Clustering redshifts:

• Evolving galaxy bias

• Magnification effects



Summary & Outlook
• Mild ~2.5σ tension in S8 between Planck and low-z WL 

measurements (KV450, DES-Y1 recalibrated). 


• Systematics? Redshift calibration? 


• Other LSS probes show similar discrepancies. 
Related to H0 crisis? Serious problem for ΛCDM?


• Exciting times: KiDS+VIKING and DES finished;  
all 3 stage-III surveys analysing more data now.


• Prepare with today’s data for Euclid/LSST.


