Rock 'n' roll, jazzy, and classical solutions to the Hubble tension

Tensions between the Early and Late Universe KITP
July 17, 2019

Francis-Yan Cyr-Racine

Department of Physics, Harvard University \rightarrow Department of Physics and Astronomy, University of New Mexico

Let's summarize

Let's start with a poll

- How would you characterize the current situation?
 - $< 1\sigma$: Consistency
 - $> 2\sigma$: Curiosity
 - $> 3\sigma$: Tension/discrepancy
 - $> 4\sigma$: Problem
 - $> 5\sigma$: Crisis

Theorists to the rescue!

Whether we have a tension, a problem, or a crisis, our job as theorists is to identify what properties a successful solutions might have.

Bottom line:

We have yet to identify a complete solution that is palatable to both cosmologists and particle physicists, but have found important clues about what a successful model would look like.

w/ Christina Kreisch, Prateek Agrawal, David Pinner, Lisa Randall, Lloyd Knox

Approach: Discrepancy in the baryon sound horizon

Aylor et al. (2018) See also Bernal et al. (2016), Verde et al. (2017)

How to modify the Baryon-Photon Sound Horizon

• Can either change the sound speed, or the Hubble rate at early times.

$$r_{\rm s} = \int_0^{a_{\rm d}} da \frac{c_{\rm s}(a)}{a^2 H(a)}$$

Can we change the Hubble rate before recombination without ruining everything else?

$$H^2(a) = \frac{8\pi G}{3} \sum_{i} \rho_i(a)$$

Classical solution: N_{eff}

• The presence of extra relativistic species is a hallmark of many extensions of the Standard Model (*N*-Naturalness, Twin Higgs, etc.)

$N_{\rm eff}$ alone doesn't work...

• It can get you partially there, but at the price of degrading high-*l* CMB

Planck Coll. (2018)

Free-streaming neutrinos and the CMB

Baryon-photon perturbations interact with all relativistic species through their gravitational coupling

Cyr-Racine & Sigurdson (2014)

$$d_{\gamma}(\tau,k)=3\zeta_{\rm in}(1+\Delta_{\gamma})\cos\left(\varphi_s+\delta\varphi\right)+O(\varphi_s^{-1})\,,$$
 where

$$\Delta_{\gamma} \simeq -0.2683R_{\nu} + O(R_{\nu}^2) ,$$

$$\delta\varphi \simeq 0.1912 \pi R_{\nu} + O(R_{\nu}^2) .$$

$$R_{\nu} = \frac{\rho_{\nu}}{\rho_{\gamma} + \rho_{\nu}} \simeq 0.403$$

for
$$N_{\rm eff} \simeq 3.046$$

Bashinsky & Seljak (2004) Follin et al. (2015) Baumann, Green, Meyers & Wallisch (2016) Choi, Chiang & Loverde (2018)

Jazzy solution: Get rid of free-streaming

- Introduce neutrino self-interaction
- Require serious riffing on the Standard Model...

Cyr-Racine & Sigurdson (2014) Oldengott et al. (2015) Lancaster, Cyr-Racine, et al. (2017) Oldengott et al. (2017) Kreisch, Cyr-Racine, & Doré (2019)

Beyond Free-streaming Neutrinos

New Unknown Interaction:

$$\mathcal{L}_{\mathrm{phen}} \supset -\frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} (g_{\phi}^{\alpha\beta} \nu_{\alpha} \nu_{\beta} \phi + \mathrm{h.c.})$$

4-Fermion Interaction stronger than Fermi constant

$$G_{\nu} > G_{
m F}$$

Impact of self-interacting Neutrinos on CMB

Cyr-Racine & Sigurdson (2014)

Impact of self-interacting Neutrinos on CMB

Kreisch, Cyr-Racine + (2019)

A tale of two statistical modes

Let's compare the two modes side-by-side

Kreisch, Cyr-Racine + (2019)

16

7/23/19

Why does the SIv work?

• N_{eff} increases Hubble at early times, hence reducing the sound horizon.

$$r_{\rm s} = \int_0^{a_{\rm d}} da \frac{c_{\rm s}(a)}{a^2 H(a)}$$

- The tightly-coupled neutrinos do not over damp or phase shift the photon-baryon fluctuations.
- Changes in the primordial spectrum of fluctuations (n_s, A_s) absorbs the remainder of the changes.

Rock'n'roll solution: Localized injection

Rock'n'roll solution: Localized injection

Need energy injection around matter-radiation equality.

Rock'n'roll solution: Localized injection

• With the right potential, this can work very well:

Reality check

Solutions	Solve H₀	S ₈ tension	Tooth fairies	Model building
$N_{ m eff}$	No	Worse	None (?)	Easy
Localized energy injection	Yes	Worse	Coincidence Problem at eV scale, need complex potential	Hard
Interacting neutrinos	Yes (?)	Better	Need extremely strong interaction	Hard

• The epoch between $z = 10^3$ and 10^4 seems to be key in addressing the current tensions. Is matter-radiation more involved than we think? Is this related to the $\ell < 800$ vs $\ell > 800$ discrepancy?

SIv decoupling

• Energy injection models always require a larger dark matter density and a larger scalar spectral index.

• This highlights the importance of S_8 in distinguishing solutions.

Energy Injection

Interacting Neutrinos

Kreisch, Cyr-Racine + (2019)

• BAO plays an important role in the tension

Important Take Home Messages

- As precision increases, cracks might be appearing in the standard cosmological model.
- We have yet to identify a complete solution that is palatable to both cosmologists and particle physicists.
- Main message: It is possible to find radically different cosmological model that nonetheless can provide excellent fit to the data.

The end

Finding a concrete model is hard...

Blinov et al. (2019)

See also Ng & Beacom (2014) and Arcadi et al. (2018)

CMB Polarization data

