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Quantum coherence in energy 
transfer

 Experimental verification of quantum coherence

 Method: ultra-fast spectroscopy
 2D photon echos 

 System: 
 FMO of green sulfur bacteria (low temperature)
 (modified) reaction center of purple bacteria (low temperature)
 LH1 and LH2 of  purple bacteria (room temperature)
 Cryptophyte marine algae (room temperature)

Purple bacteriaGreen sulfur bacteria
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Quantum Biology ?

 Is quantum coherence responsible for high yield in photosynthetic exciton 
transfer ? 
→ This might contribute substantially to solve the worlds energy problem 
    since organic solar cells suffer tremendously from inefficient exciton transfer

 Does Quantum Mechanics serves a purpose within photosynthesis or 
is it  merely a result of energy and length scales ?
→ Did evolution use quantum mechanics to optimize biological functions ?
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Surprising ?

 Quantum coherence in biological life at room temperature ?
 Electronic couplings                    cm-1         152 K

→ room temperature is not high ! 
 Coupling to environmental fluctuations is, however, strong !

→
→ one-phonon rate (Markov/Golden rule): dynamic overdamped ! 
→ classical hopping transport

→ Is this simple argumentation correct ? 
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Model approach

 Donor – Acceptor system
 Simplest nontrivial model due to 

coupling to environmental harmonic 
fluctuations
 Propagating modes

 
 Localized modes

→ Attention: 
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Method: Quapi

 Time evolution of statistical operator of donor-acceptor system

 Trotter slicing

 Influence functional

 Memory                        and Trotter time          finite → numerically exact
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 Strong coupling: α = 0.1, low temperature: T = 15 K, spatially uncorrelated
 

 

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)
P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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 Strong coupling: α = 0.1, low temperature: T = 15 K, spatially uncorrelated
→ long lived coherence for small ωc 

 = 0.08, 
c
 =  = 106 cm-1 , T = 152 K, correlated fluctuations: r

da
 = 3.8 Å

→ spatial correlations cause longer coherence

→ Long lived (for ~ 1 ps) quantum coherence is actually not surprising
given the fluctuation spectrum and/or reasonable spatial correlations

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)
P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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Never underestimate small ωc !

 Comparison at weak coupling of QUAPI with RESPET
 

 
 

 

P. Nalbach and M. Thorwart, J. Chem. Phys. 132, 194111 (2010) 
    selected for the June 1, 2010 issue of Virtual Journal of Biological Physics Research→
P. Nalbach, Phys. Rev. B 66, 134107 2002
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Lessons

Never underestimate small ωc !

 Comparison at weak coupling of QUAPI with RESPET
 RESPET (resumed perturbative treatment)

 Memory kernel exact to second order (including all non-Markovian features)
 Time evolution operator              =                 +               +                    .... 

 

P. Nalbach and M. Thorwart, J. Chem. Phys. 132, 194111 (2010) 
    selected for the June 1, 2010 issue of Virtual Journal of Biological Physics Research→
P. Nalbach, Phys. Rev. B 66, 134107 2002
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Lessons

Never underestimate small ωc !

 Comparison at weak coupling of QUAPI with RESPET
 RESPET (resumed perturbative treatment)

 
 

→ Multi–phonon processes dominate !
 → Lindblad, Redfield, Markov … questionable !!

P. Nalbach and M. Thorwart, J. Chem. Phys. 132, 194111 (2010) 
    selected for the June 1, 2010 issue of Virtual Journal of Biological Physics Research→
P. Nalbach, Phys. Rev. B 66, 134107 2002
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Lessons

Small ωc – Check of method

 Comparison of QUAPI with reduced hierachy equations
→ joint project with A. Ishizaki and G.R. Fleming
 Left: εa-εd = 100 cm-1,  = 40 cm-1, 

c
 = 53 cm-1 , T = 300 K

 Right: εa-εd = 100 cm-1,  = 200 cm-1, 
c
 = 53 cm-1 , T = 300 K

 

P. Nalbach, A. Ishizaki, G.R. Fleming and M. Thorwart, under preparation,
Efficient theoretical methods for the dissipative biomolecular exciton transport
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Lessons

Small ωc – Check of method

 Comparison of QUAPI with reduced hierachy equations
→ joint project with A. Ishizaki and G.R. Fleming

→ Both methods give identical results for typical parameters of 
biomolecular exciton transfer

P. Nalbach, A. Ishizaki, G.R. Fleming and M. Thorwart, under preparation,
Efficient theoretical methods for the dissipative biomolecular exciton transport
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Why quantum coherence ?
Function ?

 Long lived (for ~ 1 ps) quantum coherence is actually not surprising
 Does it serve a purpose ?→
 Are there biological functions relying on quantum coherence ?→
 Did evolution drive nature to facilitate quantum coherence ?→

  

 
 

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules



 Quantum Coherent Energy Transfer in Photosynthesis – P. Nalbach 

Universität Hamburg

Why quantum coherence ?
Function ?

 Long lived (for ~ 1 ps) quantum coherence is actually not surprising
 Does it serve a purpose ?→
 Are there biological functions relying on quantum coherence ?→
 Did evolution drive nature to facilitate quantum coherence ?→

 Fleming's speculation: 
High efficiency in exciton transfer to RC caused by quantum coherence !

 caused intensive research effort:→
 Plenio group
 Aspuru-Guzik group
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Why quantum coherence ?
Function ?

 Long lived (for ~ 1 ps) quantum coherence is actually not surprising
 Does it serve a purpose ?→
 Are there biological functions relying on quantum coherence ?→
 Did evolution drive nature to facilitate quantum coherence ?→

 Fleming's speculation: 
High efficiency in exciton transfer to RC caused by quantum coherence !

 caused intensive research effort:→
 Plenio group
 Aspuru-Guzik group

 → No final answer yet

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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Lessons for functions
from models

 , 
c
 106 cm-1, T = 15.2 K

 Correlated fluctuations: 
 (a) distant channels: r

da
 = 3.8 Å, r = 38 Å

 (b) close channels:    r
da

 = 38 Å, r = 3.8 Å 

donors


r

d a

r



acceptors

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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Lessons from multiple
path

 , 
c
 106 cm-1, T = 15.2 K

 Correlated fluctuations: 
 (a) distant channels: r

da
 = 3.8 Å, r = 38 Å → independent

  

 

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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 , 
c
 106 cm-1, T = 15.2 K

 Correlated fluctuations: 
 (a) distant channels: r

da
 = 3.8 Å, r = 38 Å → independent

 (b) close channels:    r
da

 = 38 Å, r = 3.8 Å 
 → communicating, but suppressed at room temperatures

 

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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Lessons from multiple
path

 , 
c
 106 cm-1, T = 15.2 K

 Correlated fluctuations: 
 (a) distant channels: r

da
 = 3.8 Å, r = 38 Å → independent

 (b) close channels:    r
da

 = 38 Å, r = 3.8 Å 
 → communicating, but suppressed at room temperatures

 → Spatial correlated fluctuations can enhance and suppress decoherence 

P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules
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Lessons from multiple
path

Negativity as entanglement measure in close channels: 
 106 cm-1, T = 15.2 K, (a)  
 main: coupled donor-acceptors: J = 0.1 
Inset: uncoupled:                        J = 0 

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)
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Lessons from multiple
path

Negativity as entanglement measure in close channels: 
 106 cm-1, T = 15.2 K, (a) and (b)  
 main: coupled donor-acceptors: J = 0.1 
Inset: uncoupled:                        J = 0 

 → Slow bath supports (re-) emergence and death of entanglement
and even generates entanglement for uncoupled channels

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)
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Summary

 Long lived quantum coherence can be understood 
 for slow environmental fluctuations and

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)

 spatially correlated environmental fluctuations
P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules

 Multi–phonon processes dominate rendering Lindblad, Redfield, 
Markov (…) questionable

P. Nalbach and M. Thorwart, J. Chem. Phys. 132, 194111 (2010)
 selected for the June 1, 2010 issue of Virtual Journal of Biological Physics Research→

 All methods must be tested carefully: Quapi = RHE
P. Nalbach, A. Ishizaki, G.R. Fleming and M. Thorwart, under preparation

 Spatially correlated fluctuations can enhance and suppress 
decoherence in multiple channel configurations
P. Nalbach, J. Eckel and M. Thorwart, New J. of Phys. Focus issues: Quantum effects and noise in biomolecules

 Slow bath supports (re-) emergence and death of entanglement
and even generates entanglement for uncoupled channels

M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss,  Chem. Phys. Lett. 478, p. 234-237 (2009)
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