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Part I:

A plane capacitor with a 2D electron gas:
How large can its capacitance be?

Brian Skinner and B. I. Shklovskii
arXiv:1007.5308v2 (2010)



3

Normal “geometric” capacitance
For two perfect metal electrodes:

C is determined from total energy:

d

+Q -Qε

V

Electrode area  S



4

Corrections to Cg from imperfect screening

In 3D:
Electric field penetrates an 
imperfect electrode
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The capacitance can be larger than Cg

At naB
2<<1, a 2DEG is a classical 

system.  
Strong electrostatic correlations 
lead to µ < 0:

µ ~ -e2n1/2/ε
Rs ~ dµ/dn < 0
d* = d – 0.12/n1/2 < d

+Q -Q

-Rs/2

Theory: Bello, Levin, 
Shklovskii, and Efros, Sov.  
Phys.-JETP  53, 822 (1981).
Experiment: Eisenstein, 
Pfeiffer, and West, PRL 68, 
674 (1992).

d* = d + Rs/2

)2( D

sR

In 2D:
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How large can the capacitance be?

Most experiments 
operate at n1/2d > 1

A recent experiment 
examined n1/2 d < 1
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What happens in the limit n1/2 d 0? How large can C be?

?

[Li, Richter, Paetel, Kopp, Mannhart, 
and Ashoori, arxiv:cond-mat/1006.2847 
(2010)]

~4 nm
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Picture of the classical 2DEG

2DEG
insulator

metal

d

n-1/2 << d

++++++++++++++++++

Metal charge is uniform.  
Correlations produce a 
small correction to C.

n-1/2 >> d

Metal charge is discrete and 
correlated with the 2DEG.
Only a weak dipole-dipole 
repulsion resists capacitor 
charging.

2d
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Ground state of the classical 2DEG

can be computed for arbitrary nd2.
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Capacitance in the nd2 0 limit

one interaction:2d

R = n-1/2

udd = e2(2d)2/2εR3

all interactions:

α ≈ 9.0

d* ≈ 2.7d·(n1/2d)
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Comparison with experiment

At n1/2d << aB/d, the quantum confinement energy (~1/R2) 
destroys the dipole correlations (~1/R3).
C is truncated at d* = aB/4.
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Other experimental realizations of a capacitance 
substantially larger than geometrical

• GaAs-AlGaAs HIGFETs with n =10^9 cm^-2 holes 
and d=250nm, nd^2 =1.

• Two parallel quantum wells with separate contacts (a 
capacitor with two 2DEGs). At d =30 nm, n < 10^11 
nd^2 <1. Jim Eisenstein says it can be measured. We 
generalized our theory for this case.

• Electrons floating on liquid helium surface with a 
close metal electrode under the surface. Presumably 
very low density n and low disorder.
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Part II:

Anomalously large capacitance 
of an ionic liquid/metal capacitor

M. S. Loth, Brian Skinner and B. I. Shklovskii
arXiv:1005.3065v4 (2010)
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“Primitive model” of an ionic liquid

Ionic liquid is a molten 
salt -- liquid of classical 
charged hard spheres

Image charge attraction 
creates ion-image 
dipoles
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The geometrical “limit” for C

At large Q, ions form 
a uniform layer

(Helmholtz, 1853)

Q = 0Q > 0

a/2

d* = a/2
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Monte Carlo results
MC simulations of nonlinear capacitance of 

the primitive model (T* = 0.05):
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Binding to the metal surface

Perfect electrodes: pairs can be separated for zero energy
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Charging through “excess dipoles”

Q > 0 comes as 
strongly-correlated 
“excess dipoles”

udd = e2a2n3/2/2ε
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Monte Carlo results
MC simulations of nonlinear capacitance of 

the primitive model (T* = 0.05):
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Linear capacitance
Finite T truncates capacitance divergence: 

C(V 0) ~1/T1/3.

T* = kBT/(e2/εa)

C
(0

)/C
g

d*=a/6 !
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Effect of an “imperfect” metal surface

Perfect electrodes: pairs can be separated for zero energy
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Effect of an “imperfect” metal surface

Finite V is required to bring free ions to the surface
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Imperfect electrode: MC results

At V < ΔV, free pairs are sparse and C is reduced.

C/
C g
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b=a/2

V* = V/(e/εa)
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Effect of asymmetric ion size

There is spontaneous polarization of the metal.
Finite voltage is required to deplete free ions.

a/2
A/2 >> a/2

depletion 
layer

bulk

“one-component plasma”
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Effect of asymmetric ion size

C diverges at V Vc,
where cations become depleted

0 0.5 1 1.5 2
0

1

2

3

V* = V/(e/εa)

C
/C

g

Equal sizes anion size a
<< cation size A

Vc ~ -(a/A)9/4 e/εa



25

Conclusions
Discrete charges form charge-image dipoles with 
the metal, producing C > Cg.

C grows sharply as n 0.

For a primitive model ionic liquid, 
Cmax/Cg ~ 1/T*1/3 and reaches 3 at small T.

Questions?
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Capacitance divergence

C diverges at the point where excess ions are depleted
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Capacitance in the crystalline phase

Charging 
by +2e
defects

C is determined by interaction 
between +2e dipoles:

Energy cost: 2(UMadelung – e2/a)

udd = (2e)2a2n3/2/2ε
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Capacitance in the crystalline phase

A gap appears in voltage.
Capacitance at a given Q is √2 times larger.
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