

Out-of-equilibrium dynamics in a two-dimensional Coulomb glass

Dragana Popović

National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA

KITP, Santa Barbara 2010

Collaborator:

Jan Jaroszyński, NHMFL/FSU

Supported by NSF DMR and NHMFL (NSF and the State of Florida)

Outline

- 2D system of strongly interacting electrons in a random potential
- Electron density n_s varied from the insulating to the metallic regime, *i.e.* through the metal-insulator transition (MIT)
- **<u>Probing the glassy dynamics</u>**:
 - 1) measure fluctuations of conductivity information on correlations \Rightarrow slowing down and correlated statistics for $n_s < n_g$ as $T \rightarrow 0$
 - 2) measure response to a perturbation
 - \Rightarrow nonexponential relaxations
 - \Rightarrow diverging equilibration times for $n_s < n_g$ as $T \rightarrow 0$

(glass transition T_g=0)

- ⇒ aging and memory
- \Rightarrow abrupt change in aging properties at the 2D MIT (n_c)

Samples: 2D electron system in Si MOSFETs

(metal-oxide-semiconductor field-effect transistor)

• low densities ($n_s \sim 10^{11} \text{ cm}^{-2}$) Fermi energy: $E_F = \pi \hbar^2 n_s / 2m^* \approx 0.6 \text{ meV}$ **Electron-electron interaction energy:** $E_{e-e} \sim (e^2/\epsilon)(\pi n_s)^{1/2} \approx 10 \text{ meV}$ $r_{s} \equiv E_{e-e}/E_{F} \propto n_{s}^{-1/2} \sim 10!$

• critical conductivity $\sim e^2/h$

Na+ ions randomly distributed

throughout SiO₂ (frozen out

2D electrons move in a

smooth random potential

below ~100 K)

interface roughness

 $\sigma \sim (e^2/h)(k_{\rm E}l) \Rightarrow k_{\rm E}l \sim 1$

 $(l - mean free path; k_F - Fermi$ wave vector)

⇒ strong Coulomb interactions, strong disorder

Phase diagram of a 2DES in Si

[J. Jaroszyński and D. Popović, PRL 96, 037403 (2006)]

Repeat measurement at (many) different T (after warm-up to 10 K):

• minimum moves to longer times as T decreases – slower relaxations

Approach to equilibrium:

data (for different T) collapse for times after the minimum

• Relaxations exponential

- The system reaches equilibrium after a long enough t
- Characteristic (equilibration) time $\tau_{eq} \propto \exp(E_A/T)$, $E_A \approx 57$ K

$$\tau_{eq} \rightarrow \infty$$
 as T $\rightarrow 0$, *i.e.* glass transition $T_g = 0$

[see Grempel, Europhys. Lett. 66, 854 (2004) for a 2D Coulomb glass; also showed aging]

Initial relaxation:

data (for different T) collapse for times before the minimum:

Repeat everything for many different n_c

$\tau_{low} \propto \exp{(an_s^{1/2})} \exp{(E_a/T)}, E_a \approx 20 \text{ K}$

• $\underline{T \rightarrow 0:} \\ \sigma/\sigma_0 \propto t^{-\alpha}$ as expected for a phase transition at T=0 (previous slide: scaling as $T \rightarrow 0$)

 Coulomb interactions in 2D: $E_F/U \sim n_s^{1/2}$

What have we learned from relaxations?

- data strongly suggest $T_g=0$ for $n_s \le n_g$ in a 2DES in Si (diverging equilibration time, scaling of nonexponential relaxations, power law as $T \rightarrow 0 \Rightarrow T_g = 0$; similar behavior in spin glasses, where $T_g \ne 0$)
- at finite T, the system appears glassy for short enough t

(e.g. at T= 1 K, equilibration time ~ 10^{13} years!

age of the Universe ~ 10^{10} years)

- **Coulomb interactions** between 2D electrons a **dominant** role in the out-of-equilibrium dynamics
- as T \rightarrow 0, no relaxations for $n_s > n_g$; no relaxations for $k_F l > 1$

Note: system equilibrates only after it first goes farther away from equilibrium!

Relaxations of conductivity after a waiting time protocol: aging and memory

[J. Jaroszyński and D. Popović, Phys. Rev. Lett. 99, 046405 (2007)]

Relaxations for a few different T and t_w:

Response (conductivity) depends on the system history (t_w and T) in addition to the time t - aging - a key characteristic of relaxing glassy systems.

When is the overshooting observed?

- overshooting only when the system is excited out of a thermal equilibrium $(t_w \gg \tau_{eq})$; no memory
- no OS when excited out of a relaxing (nonequil.) state $(t_w \ll \tau_{eq})$: aging and memory

What is the origin of overshooting???

- observed in a variety of systems (*e.g.* insulating granular metals, manganites, biological systems)
- some theoretical models [Morita *et al.*, PRL 94, 087203 (2005); Mauro *et al.*, PRL 102, 155506 (2009)]
- large perturbations out of equilibrium?
- here ΔE_F >> T should trigger major charge rearrangements (n_s changed up to a factor of 7; in InO_x, density change ~ 1%)

Aging regime (no OS, T=1 K)

[J. Jaroszyński and D. Popović, Phys. Rev. Lett. 99, 216401 (2007)] (T=1 K: $\tau_{eq} \sim 10^{13}$ years! Age of the Universe ~ 10^{10} years)

 \Rightarrow a memory of t_w is imprinted on each $\sigma(t)$

σ(t, t_w) exhibit full aging for n_s < n_c
for n_s > n_c, an increasingly strong departure from full aging

aging function: $\sigma(t/t_w^{\mu})$

(μ-scaling useful in studies of other glasses; may not have a clear physical meaning)

• $\sigma(t, t_w)$ exhibit full aging for $n_s < n_c$

• for $n_s > n_c$, an increasingly strong departure from full aging that reaches maximum at n_g

aging function: $\sigma(t/t_w^{\mu})$

NOTE: mean-field models of glasses, for example, include both those that show full aging and those where no t/t_w scaling is expected.

Popović – KITP, SB 2010

(μ-scaling useful in studies of other glasses; may not have a clear physical meaning) full aging: μ=1

- an abrupt change in aging at the 2D MIT (n_c)
- insulating glassy phase and metallic glassy phase are different!

Fixed t_w and n_1 ; vary n_0

 $\sigma(t)/\sigma_0 = [\sigma(t=1s)/\sigma_0] t^{-\alpha}$

- both relaxation amplitudes $\sigma(t=1s)/\sigma_0$ and slopes α depend nonmonotonically on n_0
- another change in aging properties at n_s ≈ n_c

Relaxation amplitudes peak just below n_c, and they are suppressed in the insulating regime!

Remove all 2D electrons from the inversion layer during t_w ($V_1 < V_T$):

No t_w dependence, *i.e.* no memory!

⇒ Glassiness from 2DES, not from background charges

Summary: 2D Coulomb glass

- Emergence of an intermediate, (NFL) metallic phase $(n_c < n_g)$ between the metal and the insulator
- Glassy behavior for $n_s < n_g$ (in the insulator and in the intermediate phase) glassy ordering as a precursor of the MIT in a 2DES in Si
- Manifestations of glassiness: nonexponential relaxations, diverging equilibration times ($T_g=0$), aging and memory (abrupt changes in aging at the MIT)
- 2DES in Si:
 - similarities to other glassy systems (e.g. spin glasses)
 - a "simple", model system for exploring the dynamics of strongly correlated systems (free of complications associated with changes in magnetic or structural symmetry)

[V. Dobrosavljevic *et* al.: PRL 83, 4642 (1999); PRB 66, 081107 (2002); PRL 90, 016402 (2003); PRL 91, 066603 (2003); EPL 67, 226 (2003); PRL 94, 046402 (2005)]

Global phase diagram (theory)

<u>Physical trajectory</u>: $E_F \sim n_s$; $U \sim n_s^{1/2}$; $W \sim const. \implies (E_F/U) \sim (W/U)^{-1}$

1 High-mobility samples, **2** Low-mobility samples

Simulations

- Molecular Dynamics [C. Reichhardt and C. J. Olson Reichhardt, PRL, 93, 176405 (2004]: a classical model of interacting electrons in 2D with
- \bullet increase of noise power and α with decreasing density and T
- non-Gaussianity at low n_s and T

Similar to experiments in 2DES in Si

Trajectories change with time: dynamical inhomogeneities

Noise power and α maximum \cdot

 Monte Carlo [Kolton, Grempel, Dominguez, PRB 71, 024206 (2005)]:
 3D Coulomb glass – heterogeneous dynamics

disorder

FIG. 5. Electron trajectories for a fixed period of time for fixed T = 0.09 at (a) $N_s/N_p = 1.67$, (b) 1.37, (c)0.5, and (d) 0.3.

Monte Carlo – aging in a 2D Coulomb glass:

- Grempel, Europhys. Lett. 66, 854 (2004)
- Shimer, Täuber, Pleimling, arXiv: 1007.1929 (2010) density autocorrelation function

The aging function obeys power-law scaling

$$\sim t_{\rm W}^{-b} (t/t_{\rm W})^{-\alpha}$$

where the exponents depend on the density and T