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OutlineOutline

• 2D system of strongly interacting

 

electrons in a random

 

potential
• Electron density ns

 

varied from the insulating to the metallic

 

regime,
i.e. through the metal-insulator transition (MIT)

• Probing the glassy dynamics:
1)

 

measure fluctuations

 

of conductivity –

 

information on correlations
⇒ slowing down and correlated

 

statistics

 

for ns < ng

 

as T→0

2)

 

measure response

 

to a perturbation
⇒ nonexponential

 

relaxations

⇒ diverging equilibration times for ns < ng

 

as T→0  

(glass transition Tg

 

=0)

⇒ aging and memory

⇒ abrupt change in aging

 

properties at the 2D MIT

 

(nc

 

)
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Si

SiO2

2D

 

at low T

Vg
Disorder

 

due to:
1)

 

Na+

 

ions randomly

 

distributed 
throughout

 

SiO2

 

(frozen out 
below ∼100 K)

2)

 

interface roughness

2D electrons move in a
smooth random potential

• low densities (ns ∼

 

1011

 

cm-2)
Fermi energy:

 

EF = πħ2ns

 

/2m* ≈

 

0.6 meV
Electron-electron interaction energy: 

Ee-e

 

∼

 

(e2/ε)(πns

 

)1/2

 

≈

 

10 meV

rs

 

≡

 

Ee-e

 

/EF

 

∝

 

ns
-1/2

 

∼

 

10!

• critical conductivity ~ e2/h     
σ

 

~ (e2/h)(kF l)

 

⇒ kF

 

l ~ 1

(l –

 

mean free path; kF

 

–

 

Fermi 
wave vector)

Samples: 2D electron system in Si Samples: 2D electron system in Si MOSFETsMOSFETs
(metal-oxide-semiconductor field-effect transistor)

⇒ strong Coulomb interactions, strong disorder
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Phase diagram of a 2DES in SiPhase diagram of a 2DES in Si

T
em

pe
ra

tu
re

 (K
)

ns
*0

dσ/dT<0dσ/dT>0

Glassy Behavior
(for ns <ng )

Insulating
σ(T→0)=0

Metallic
(Non-Fermi Liquid)

σ(T→0)≠0

kF l < 1

Metallic
(FL? NFL?)

nc ng

“Bad”

 

metal:
σ(ns

 

,T)=σ(ns

 

,T=0)+b(ns

 

)T3/2Exponential localization

Focus on the
kF l < 1

 

region

kF l > 1

(glassiness not
observed for
kF l > 1)

nc

 

–

 

critical density
for the MIT

ng

 

–

 

glass transition   
density
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Relaxations of conductivity after a rapid change of nRelaxations of conductivity after a rapid change of nss

Initial 
ns

 

(1011cm-2)
=20.26 > ng

kF

 

l
 

≤
 

1
Final
ns

 

(1011cm-2)=
=4.74 ≥

 

nc

[J. Jaroszyński

 

and D. Popović, PRL 96, 037403 (2006)]
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T=3.3 K

σ0

 

–

 

equilibrium
conductivity at
T and final ns

ng

 

≈7.5×1011cm-2, nc

 

≈4.5×1011cm-2

ΔEF

 

» kB

 

T
Overshooting
of equilibrium!

Low-mobility samples
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Repeat measurement at

 

(many) different T

 

(after warm-up to 10 K):

• minimum moves to longer times as T decreases –

 

slower

 

relaxations
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data (for different T) collapse for 
times

 

after

 

the minimum

• The system reaches

 

equilibrium

 

after a

 

long enough t
• Characteristic (equilibration) time τeq

 

∝

 

exp (EA

 

/T),

 

EA

 

≈

 

57 K

τeq

 

→ ∞
 

as  T→0,  i.e. glass transition Tg

 

= 0

[see Grempel, Europhys. Lett. 66, 854 (2004)
for a 2D Coulomb glass; also showed aging]

(τhigh

 

≡ τeq

 

)

• Relaxations
exponential

Approach to equilibrium:
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data

 

(for different T)

 

collapse for

 times

 

before

 

the minimum:

• for short enough t

 

<τeq

 

,

σ(t,T)/σ0

 

∝
 

t-α(n)

 
exp{-[t/τlow

 

(ns

 

,T)]β(n)

 
}

glassy relaxation(n ≡

 

ns

 

)

(α=0.07, β<0.3 for 
this ns

 

)

Initial relaxation:

τlow

 

∝
 

f(ns

 

)
 

exp (Ea

 

/T), Ea

 

≈20 K
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• T→0:
σ/σ0

 

∝
 

t-α

as expected for a phase
transition at T=0
(previous slide:
scaling

 

as T→0)

Repeat everything for many different ns

τlow

 

∝
 

exp (ans
1/2) exp (Ea

 

/T), Ea

 

≈20 K

• Coulomb interactions
in 2D:

 

EF

 

/U ~ ns
1/2 ng

β

 

grows with ns

 

:
relaxations faster with increasing ns
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What have we learned from relaxations?What have we learned from relaxations?

• data strongly suggest Tg

 

=0 for ns ≤

 

ng

 

in a 2DES in Si
(diverging equilibration time, scaling of nonexponential

 

relaxations, power
law as T→0 ⇒ Tg

 

= 0;

 

similar behavior in spin glasses, where Tg

 

≠

 

0)
• at

 

finite T, the system appears

 

glassy for short enough t

(e.g. at T= 1 K,  equilibration time ∼

 

1013

 

years!  
age of the Universe ∼

 

1010

 

years)

• Coulomb interactions

 

between 2D electrons –

 

a dominant

 

role in the 

out-of-equilibrium dynamics

• as T→0, no relaxations for ns

 

> ng

 

; no relaxations for kF

 

l > 1

Note:

 

system equilibrates only after it first goes

 

farther away

 

from equilibrium!
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Relaxations of conductivity after a waiting time Relaxations of conductivity after a waiting time 
protocol: aging and memoryprotocol: aging and memory

[J. Jaroszyński

 

and D. Popović, Phys. Rev. Lett. 99, 046405 (2007)]

Initial and final 
ns

 

(1011cm-2)=3.88 < nc

 

;
density during tw

 

=1000 s: 
ns

 

(1011cm-2)=20.26 > ng

• change history by 
varying T and tw
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Relaxations for a few different T and tw

 

:

Response

 

(conductivity) depends on

 

the system history

 

(tw

 

and T) in addition 
to the time t –

 

aging –

 

a key characteristic of relaxing glassy systems.

Memory

overshooting
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Memory loss

And a few more…

 

[for ns

 

(1011cm-2) =7.33 ≤

 

ng

 

]:
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• overshooting

 

only when the 
system is excited out of a 
thermal equilibrium 
(tw

 

»

 

τeq

 

); no memory

• no OS when excited out of a 
relaxing (nonequil.) state 
(tw

 

«

 

τeq

 

): aging and memory

When is the overshooting observed?
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What is the origin of overshooting???

• observed

 

in a variety of systems (e.g. insulating granular metals, 
manganites, biological systems)

• some theoretical models
[Morita et al., PRL 94, 087203 (2005); Mauro et al., PRL 102, 155506 (2009)]

• large

 

perturbations out of equilibrium?

• here ΔEF

 

>> T

 

should trigger major charge rearrangements
(ns

 

changed up to a factor of 7;

 

in InOx

 

, density change ~ 1%)
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Aging regime (no OS, T=1 K)Aging regime (no OS, T=1 K)
[J. Jaroszyński

 

and D. Popović, Phys. 
Rev. Lett. 99, 216401 (2007)]

(T= 1 K:  τeq

 

∼

 

1013

 

years!
Age of the Universe ∼

 

1010

 years)

n0

 

< nc

Full (simple) aging: σ(t/tw

 

)

σ(t)/σ0

 

∝
 

(t/tw

 

)-α

 
for t ≤

 
tw

⇒ a memory of tw

 

is imprinted on each σ(t)
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• σ(t, tw

 

) exhibit full aging for ns

 

< nc
• for ns

 

> nc

 

, an increasingly strong departure from full aging

aging function: σ(t/tw
μ)

 

(μ-scaling useful in studies of other 
glasses; may not have a clear 
physical meaning)



full aging: μ=1

• an abrupt change in aging
at the 2D MIT (nc

 

)

• insulating glassy phase and
metallic glassy phase are 
different!

NOTE: mean-field models of glasses, for 
example, include both those that show full
aging and those where no t/tw

 

scaling is expected.
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• σ(t, tw

 

) exhibit full aging for ns

 

< nc
• for ns

 

> nc

 

, an increasingly strong departure from full aging
that reaches maximum at ng

aging function: σ(t/tw
μ)

 

(μ-scaling useful in studies of other 
glasses; may not have a clear 
physical meaning)
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σ(t)/σ0

 

=[σ(t=1s)/σ0

 

] t-α

Relaxation amplitudes peak just below nc

 

,
 

and they are 
suppressed in the insulating regime!

• both relaxation amplitudes
σ(t=1s)/σ0

 

and slopes α

 

depend
nonmonotonically

 

on n0

• another change in aging 
properties at ns

 

≈
 

nc

nc ng

Fixed tw

 

and n1

 

; vary n0
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0
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0.04

0.06

0.08

1 2 3 4 log t (s)

lo
g 
σ(

t,T
)/σ

0(T
)

tw(s):

10000

1000
100

Remove all 2D electrons from the inversion layer during tw
(V1

 

<VT

 

):

No tw

 

dependence, i.e. no memory!

⇒ Glassiness from 2DES, not from background charges

T=1 K
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Summary: 2D Coulomb glassSummary: 2D Coulomb glass

• Emergence of an intermediate, (NFL) metallic phase

 

(nc

 

< ng

 

)

 

between 
the metal and the insulator

• Glassy behavior for ns

 

< ng

 

(in the insulator and in the intermediate phase) –
glassy ordering as a precursor of the MIT

 

in a 2DES in Si

• Manifestations of glassiness:
nonexponential

 

relaxations, diverging equilibration times (Tg

 

=0), 
aging and memory

 

(abrupt changes in aging at the MIT)

• 2DES in Si: 
-

 

similarities to other glassy systems (e.g. spin glasses)
- a “simple”, model system

 

for exploring the dynamics of strongly 
correlated systems (free of  complications associated with changes 
in magnetic or structural symmetry)
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(hard gap)

Metal

Wigner-Mott
Glass

(gapless)

Metallic
Glass

M

1 2

Disorder/U 

Global phase diagramGlobal phase diagram
(theory)(theory)

Physical trajectory:

 

EF ~ ns

 

; U ~ ns
1/2;

 

W ~ const. (EF

 

/U) ~ (W/U)-1

1 High-mobility samples,            Low-mobility samples2

• glass as a precursor

 

of MIT

• melting of glass even at T=0
(by quantum fluctuations)

• Metallic glass phase:

σ(T) − σ(0) ∼

 

T3/2

• hierarchical,

 

correlated
dynamics

• MIT as a Mott transition
with disorder

 

(DMFT picture)

[V. Dobrosavljevic

 

et al.: PRL 83, 4642 
(1999);  PRB 66, 081107 (2002); PRL 90, 
016402 (2003); PRL 91, 066603 (2003); 
EPL 67, 226 (2003);PRL 94, 046402 (2005)]
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SimulationsSimulations

• Molecular Dynamics

 

[C. Reichhardt

 

and C. J. Olson Reichhardt, 
PRL, 93, 176405 (2004]:

 

a classical model of interacting electrons in 2D with         
disorder

• increase of noise power and α

 

with decreasing density and T

Similar to experiments in 2DES in Si

• non-Gaussianity

 

at low ns

 

and T

Noise power and α

 

maximum

Trajectories change with time:
dynamical inhomogeneities

• Monte Carlo  [Kolton, Grempel, 
Dominguez, PRB 71, 024206 (2005)]:
3D Coulomb glass –
heterogeneous dynamics
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Monte Carlo

 

–

 

aging in a 2D Coulomb glass:

• Grempel, Europhys. Lett. 66, 854 (2004)

• Shimer, Täuber, Pleimling, arXiv: 1007.1929 (2010) –
density autocorrelation function

The aging function obeys power-law

 

scaling

~ tw
-b

 
(t/tw

 

)-α

where the exponents depend on the density and T
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