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Plan

• Complexity theory for physics

• Physics for complexity theory
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Complexity theory: the lightning intro

Complexity theory classifies problems according to the scaling of 
the resources a computer requires to solve large instances
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Complexity theory: the lightning intro

• P -- solvable in polynomial 
time by a classical computer

• BQP -- solvable in polynomial 
time by a quantum computer P

BQP

Complexity theory classifies problems according to the scaling of 
the resources a computer requires to solve large instances
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P and BQP

• Classical (P): 

• What is energy of given 
configuration in 3D Ising 
model? 

• Quantum (BQP):

• Is there a factor 1 < p < m of the 
integer N? 

Can identify efficiently solvable (easy!) problems directly:
 find polynomial time algorithms

P
BQP

Arithmetic ~500AD 

Shor 1994
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NP and QMA

• NP -- checkable in poly time by a 
classical computer

• Is the ground state energy of  
Ising model below E?

• QMA -- checkable in poly time by 
a quantum computer

• Is the ground state energy of a 
local Hamiltonian below E?

Kitaev 2001

NP
QMA

Identify reasonable problems by finding 
polynomial times algorithms to check them
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P   NP!=

P

NPThere are hard problems.*

* Conjecture
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P   NP!=

P

NPThere are hard problems.*

* Conjecture

BQP

QMA

(even with quantum computers)
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Strong Church-Turing hypothesis

A computer can efficiently simulate any physical 
model of computation.

• All physical models of computation are equivalent

• Any physical object undergoing natural dynamics 
can be viewed as a computer.

• If               there must be glassy physical systemsP != NP
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Guilt by association: -completeness

• Identify hard problems by circumstantial evidence

All quantum verifiable problems (QMA)All classical verifiable problems (NP)

3D Ising Glass 2D Pauli Glass
Is the ground state energy of

< E?

Is ground state energy of

< E?

reduce 
to

reduce 
to

H =
∑

〈ij〉

Jijσiσj

Barahona 1982 Oliveira, Terhal 2005

H =
∑

〈ij〉

Jijσ
αij

i σ
αji

j
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Extended hardness

• No physical process can find ground state of H efficiently.
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Extended hardness

• No physical process can find ground state of H efficiently.

Thermal annealing
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Extended hardness

• No physical process can find ground state of H efficiently.

Thermal annealing

Adiabatic annealing
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Some -complete problems for physicists

• NP-complete ground state energy problems:

• QMA-complete ground state energy problems:

*QMA1-complete

k-SAT q-state Potts

2D translation-
invariant tiling

3D Ising glass

Planar Ising glass in a 
field

k-Local Hamiltonian k-QSAT*

2D Pauli Glass
1D translation-

invariant Hamiltonian

Cook 1971; Levin 1973
Garey, Johnson 1979

Barahona 1982
Kitaev 2001
Bravyi 2006

Oliveira, Terhal 2005
Gottesman 2009
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Finite temperature slowness and PCP

• The PCP theorem asserts that distinguishing certain optimization 
problems with zero ground state energy from those with extensive 
ground state energy is NP-complete. 

• Annealing to a finite temperature must be slow for these.

• Best current result: 3-SAT cannot be cooled to any finite temp.

Arora, et al. 1998
Hastad 2001
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 P   NP as physical principle

• No physical process can solve NP-complete problems in polynomial 
time.

• Quantum mechanics must be linear

• Closed time-like curves are forbidden

• No hidden variables (almost).

• etc

!=

Aaronson 2005

Thursday, August 26, 2010



Statistical mechanics of hard problems

• Complexity theory shows hardness of -complete problems

• Suggests optimization problems which should exhibit glassiness

• Does not reveal mechanisms or features underlying slowness

• Studying ensembles of -complete problems not only shows 
glassiness but also glass transitions
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Classical 3-SAT: An ‘Ising’ model

N bits

M constraints

is 0 for satisfying states

Is the ground state energy zero?

!σ ∈ {±1}N

Em = δσm1 ,φm
1

δσm2 ,φm
2

δσm3 ,φm
3

H =
∑

m∈G

Em(σm1 , σm2 , σm3)

Em

∃!σ s.t. Em(σm1 , σm2 , σm3) = 0 ∀m ∈ G?
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Ensemble of 3-SAT: Average complexity

Random 3-SAT

α = M/NClause density

• Which instances are hard?

• Ensembles of ‘typical’ instances

• Control parameters 

• Spin glass physics

Random graph

Disordered couplings

Fu, Anderson 1985; Levin 1986
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Classical glass theorist’s phase diagram

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.

10320 " www.pnas.org'cgi'doi'10.1073'pnas.0703685104 Krza̧kała et al.

• Qualitative phase diagram of random constraint satisfaction problems

• Phase transitions: clustering of satisfying assignments

• Based on RSB cavity methods

• Quantum cavity methods?

 Krzakala, et al., PNAS 2007

CRL, et al., PRB 2008
Hastings, PRB 2007

 Leifer, Poulin, Ann Phys 2008

cf. Mezard, et al., Science, 2002
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Clustering

• Barrier to local search dynamics and relaxation classically

• Many-body localization in adiabatic algorithm

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.

10320 " www.pnas.org'cgi'doi'10.1073'pnas.0703685104 Krza̧kała et al.

Altshuler, et al., 2009
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Statistical physics of constraint satisfaction

Classical Quantum

Worst-case 
complexity NP-completeness QMA-completeness

Statistical 
physics

Satisfiability transitions
Dynamical transitions
Clustering transitions

?

Heuristic 
algorithms

Simulated annealing
Belief propagation

Survey propagation
??
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Statistical physics of constraint satisfaction

Classical Quantum

Worst-case 
complexity NP-completeness QMA-completeness

Statistical 
physics

Satisfiability transitions
Dynamical transitions
Clustering transitions

Satisfiability transitions
Entanglement transitions

Heuristic 
algorithms

Simulated annealing
Belief propagation

Survey propagation

Adiabatic algorithm?
Quantum Metropolis?
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Quantum Satisfiability

• Natural quantum generalization of classical satisfiability (k-SAT)

• Quantum hard worst-case complexity: QMA1-complete

• Are typical instances hard? 

• Motivated by classical story, but has its own features...
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Quantum k-QSAT: A k-local qubit model

N qubits

M constraints Πm = |φm〉〈φm|

H =
∑

m∈G

Πm

Πm penalizes 1 out 2k states

Is the ground state energy zero?

H = (C2)⊗N

∃|ψ〉 ∈ H s.t. Πm|ψ〉 = 0 ∀m ∈ G?
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Ensemble of k-QSAT: Average complexity

Random graph

Discrete

α = M/N

p = α/
(N

k

)
Clause density

Place edges w.p.

CRL, et al., 2009
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Ensemble of k-QSAT

Random graph

Discrete

α = M/N

p = α/
(N

k

)
Πm ← CP2k−1

Clause density

Place edges w.p.

Generic projectors

Continuous

CRL, et al., 2009
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Phase diagram of k-QSAT

• k=2 has direct PRODSAT-UNSAT transition

• Large k has entangled SAT phase, barrier to description of GS

• Numerics for k=3 (small sizes): αc ≈ 1± 0.06

0+ 1-

αhc αps αqlll αnose αcl

2k

12e k2

ln 2
2

2k
ln 2 2k

k →∞

PRODSAT SAT-UNPRODSAT UNSAT

0.17 0.81 0.92 3.59 4.26 7.49

αgc αhc αps αsf αcl αfm

k = 3

αgc = αps αcl

1/2 1
k = 2
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PRODSAT: dimer covering states

Dimer covering

CRL, et al., 0910.2058, 2009

|ψdc〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉

Satisfying product state

|φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉

〈φ1|ψ1〉〈φ2|ψ2〉〈φ3|ψ3〉 = 0

• Simple argument for product projectors

• Product state perturbation theory for generic projectors
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Product state perturbation theory

• Linearization of product state satisfiability condition

• Generically solvable if and only if G has dimer covers

(CP2k−1)M

Projectors Product States

(CP1)N

φm
i1i2···ik

zi1
m1

zi2
m2

· · · zik
mk

= 0

φm

ψdc
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Product state perturbation theory

• Linearization of product state satisfiability condition

• Generically solvable if and only if G has dimer covers

(CP2k−1)M

Projectors Product States

(CP1)N

φm
10···0δψm1 + φm

01···0δψm2 + · · · + φm
00···1δzmk = −δφm

00···0

φm
i1i2···ik

zi1
m1

zi2
m2

· · · zik
mk

= 0

φm

ψdc+δψdc

+δφm
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Quantum Lovász Local Lemma

• Satisfying subspace exists for nonintersecting projectors
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Quantum Lovász Local Lemma

• Satisfying subspace exists for nonintersecting projectors

• Lovász:  if                        then the subspace still exists

Ambainis, Kempe, Sattath, 2009 

D ≤ 2k/e− 1
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Random QSAT: Open questions

• Where’s the SAT-UNSAT phase transition?

• What is the complexity of computing Rg(G)? Does generic QSAT have 
a classical test?

• Is the entanglement transition a thermodynamic transition in the 
entropy?

• What about higher rank projectors? Chains at higher rank.

• Glass physics: Quantum analogs of clustering/dynamical phase 
transitions from classical glass problems? Many-body localization?

• Stat mech: Cavity methods for QSAT problem? Finite energy/
temperature behavior? Does it anneal?

• Quantum algorithms: Quantum generalizations of belief propagation, 
survey propagation? How does the adiabatic algorithm fare? Quantum 
metropolis?

CRL, et al., QIC 10, 2010
CRL, et al., PRA 81, 2010
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Conclusion

• Complexity theory attempts to identify problems which are hard.

• Hard problems in this sense are unsolvable by any physical process.

• Such hardness results provide indirect existence proofs for glassy 
dynamics.

• Random ensembles of -complete problems provide direct insight into 
those features which may lead to hardness and slow down.

• Phase transitions, clustering and replica symmetry breaking are 
characteristics of the classical statistical treatments of SAT.

• Quantum SAT is a quantum hard problem whose random ensemble 
exhibits a novel kind of ‘clustered’ phase: the entangled SAT phase.

Introductory Les Houches Lecture Notes to appear on arXiv soon 
with R. Moessner, A. Scardicchio and S. L. Sondhi. 
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k-QSAT: Worst-case complexity

• 2-QSAT in P -- classical algorithm to solve -- Easy!

• k-QSAT (k > 3) is QMA1-complete -- Hard!

|proof〉

|000〉

U(H)

QMA1
Verifier

H =
∑

m∈G

Πm

Bravyi, 2006

Thursday, August 26, 2010



3-SAT: Worst-case complexity

• 3-SAT can encode the operation of the verification 
circuit.

• 3-SAT is NP-complete: solve 3-SAT efficiently and 
you could solve all of NP efficiently (P=NP)

NP
Verifier

Cook 1971; Levin 1973

Proof

Problem

Egs = 0?Correct?
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