Slow relaxations and aging in electron glasses

Ariel Amir, work with Yuval Oreg and Yoseph Imry

Slow relaxations in nature

W. Weber, *Ann. Phys.* (1835)

D. S. Thompson, *J. Exp. Bot.* (2001)

Electron glass- Experimental system

What are the ingredients leading

Ovadyahu et al.

Logarithmic relaxations for 5 days!

to slow relaxations?

Electron glass aging-experimental protocol

A. Vaknin and Z. Ovadyahu and M. Pollak, PRL 2000

Step I

System equilibrates for long time

Step II

 V_g is changed, for a time of t_w .

Throughout the experiment

Conductance is measured as a function of time.

Data: Ovadyahu et al.

Aging and universality

Amir, Oreg and Imry, to be published

The model

- Strong localization due to disorder
 - → randomly positioned sites, on-site disorder.
- Coulomb interactions are included
- "Phonons" induce transitions between configurations.
- Interference (quantum) effects neglected.

e.g:

Pollak (1970)

Shklovskii and Efros (1975)

Ovadyahu and Pollak (2003)

Muller and loffe (2004)

"Local mean-field" approximation - Dynamics

AA, Oreg and Imry, PRB (2008)

$$n_i \rightarrow \langle n_i \rangle, \quad \frac{dn_i}{dt} = \sum_j -\gamma_{i,j} + \gamma_{j,i}$$

$$\gamma_{i,j} = \exp(-2r_{ij}/\xi)n_i(1-n_j)[N(|\Delta E|) + \theta(\Delta E)]$$

- ΔE includes the interactions
- N is the Bose-Einstein distribution
- ξ the localization length

At long times (Statics):

- The system reaches a locally stable point
- Many metastable states, each manifesting

("Pseudo-ground-states", Baranovski et al.,

"Local mean-field" approximation – Steady State

Miller-Abrahams resistance network (no interactions)

$$R_{ij} = \frac{I}{e^2 \gamma_{ij}^0}$$
 \uparrow

Equilibrium rates,

obeying detailed balance

A. Miller and E. Abrahams, (Phys. Rev. 1960)

Generalization

- 1) Find n_i and E_i such that the systems is in steady state.
- 2) Construct resistance network.

VRH (Mott) to E-S Crossover

Amir, Oreg and Imry , PRB (2009)

"Local mean-field" approximation - Dynamics

$$\begin{split} n_i &\to \langle n_i \rangle \\ \frac{dn_i}{dt} &= \sum_j -\gamma_{i,j} + \gamma_{j,i} \\ \gamma_{i,j} &= \exp(-2r_{ij}/\xi) n_i (1-n_j) [N(|\Delta E|) + \theta(\Delta E)] \end{split}$$

We saw: approach works well for statics & steady-states Moving on to dynamics...

Solution near locally stable point

Close enough to the equilibrium (locally) stable point, one can linearize the equations, leading to the equation:

$$\frac{d\delta \vec{n}}{dt} = A \cdot \delta \vec{n}$$

$$A_{i,j} = \frac{\gamma_{i,j}^{0}}{n_{i}^{0}(1-n_{i}^{0})} - \frac{e^{2}}{T} \sum_{l \neq i,j} \gamma_{i,k}^{0} \left(\frac{1}{r_{i,j}} - \frac{1}{r_{i,k}}\right), \quad (i \neq j)$$

Sum of columns vanishes (particle conservation number)

$$A = \gamma \cdot \beta$$
 , β^{-1} is equal-time correlation matrix

$$\gamma_{i,j}^0 \sim e^{-\frac{2r_{ij}}{\xi}}$$
 (Anderson Localization)

For low temperatures, near a local minimum, second term is negligible ->

Eigenvalue Distribution

Solving numerically shows a distribution proportional to $\frac{1}{\lambda}$:

Eigenvalues

Eigenvalue distribution

$$\sum_{\lambda} e^{-\lambda t} \longrightarrow \int P(\lambda) e^{-\lambda t} d\lambda \sim -\gamma_E - \log(\lambda_{\min} t)$$

1) Choose N points randomly and uniformly in a d-dimensional cube.

I. M. Lifshitz, *Adv. Phys* (1964).

Mezard, Parisi and Zee, Nucl. Phys. (1999)

Bogomolny, Bohigas, and Schmit, J. Phys. A: Math. Gen. (2003).

- 1) Choose N points randomly and uniformly in a d-dimensional cube.
- 2) Define the off-diagonals of our matrix as:

$$A_{i,j} = f(r_{ij}) \; , \; f(r) = e^{-r/\xi}$$
 (Euclidean distance) $\mathcal{E} = \xi/\langle r \rangle$

I. M. Lifshitz, *Adv. Phys* (1964).

Mezard, Parisi and Zee, Nucl. Phys. (1999)

Bogomolny, Bohigas, and Schmit, J. Phys. A: Math. Gen. (2003).

- 1) Choose N points randomly and uniformly in a d-dimensional cube.
- 2) Define the off-diagonals of our matrix as:

$$A_{i,j} = f(r_{ij}) \; , \; f(r) = e^{-r/\xi}$$
 (Euclidean distance) $\mathcal{E} = \xi/\langle r \rangle$

3) Define diagonal as:

$$A_{i,i} = -\sum_{j \neq i} A_{i,j} \qquad \text{sum of every column vanishes}$$
 (will come from a conservation law)

I. M. Lifshitz, Adv. Phys (1964).
Mezard, Parisi and Zee, Nucl. Phys. (1999)
Bogomolny, Bohigas, and Schmit, J. Phys. A: Math. Gen. (2003).

- 1) Choose N points randomly and uniformly in a d-dimensional cube.
- 2) Define the off-diagonals of our matrix as:

$$A_{i,j} = f(r_{ij}) \; , \; f(r) = e^{-r/\xi}$$
 (Euclidean distance) $\varepsilon = \xi/\langle r \rangle$

3) Define diagonal as:

$$A_{i,i} = -\sum_{j \neq i} A_{i,j} \qquad \text{sum of every column vanishes}$$
 (will come from a conservation law)

Q: What is the eigenvalue distribution? What are the eigenmodes?

Solution near locally stable point

Close enough to the equilibrium (locally) stable point, one can linearize the equations, leading to the equation:

$$\frac{d\delta\vec{n}}{dt} = A \cdot \delta\vec{n}
A_{i,j} = \frac{\gamma_{i,j}^{0}}{n_{i}^{0}(1-n_{i}^{0})} - \frac{e^{2}}{T} \sum_{l \neq i,j} \gamma_{i,k}^{0} \left(\frac{1}{r_{i,j}} - \frac{1}{r_{i,k}}\right), \quad (i \neq j)$$

Sum of columns vanishes (particle conservation number)

$$A = \gamma \cdot \beta$$
 , β^{-1} is equal-time correlation matrix

$$\gamma_{i,j}^0 \sim e^{-\frac{2r_{ij}}{\xi}}$$
 (Anderson Localization)

For low temperatures, near a local minimum, second term is negligible ->

All eigenvalues are real and negative

Distance matrices – Motivation

Relaxation in electron glasses Amir, Oreg and Imry, PRB 2008

Localization of phonons Ziman, PRL 1982 Vitelli et al., PRE 2010

Photon propagation in a gas
Akkermans, Gero and Kaiser, PRL 2008

Anomalous diffusion Scher and Montroll, PRB 1975 Metzler, Barkai and Klafter, PRL 1999

Results - 2D

Results

Results (no fitting parameters)

Results (no fitting parameters)

Exponential Distance Matrices- results

$$P(\lambda) = \frac{dC_d \varepsilon^d \log^{d-1}(\lambda/2) e^{-\frac{C_d}{2} \varepsilon^d \log^d(\lambda/2)}}{2\lambda}$$

(arbitrary dimension d)

 $\varepsilon = \xi / \langle r \rangle$, C_a =volume of a d-dimensional sphere

- Logarithmic corrections to $1/\lambda$
- In dimensions > 1: cutoff at $e^{-C/\varepsilon^{d/(d-1)}}$

Calculation of moments:

$$I_k = \int \lambda^k P(\lambda) d\lambda = \frac{1}{N} \left\langle A_{i_1, i_2} A_{i_2, i_3} \dots A_{i_k, i_1} \right\rangle$$

Amir, Oreg and Imry, PRL (2010)

Structure of eigenmodes

Examples of eigenmodes of a 5000X5000 matrix

Renormalization group approach

Number of points in a cluster of a given eigenvalue

Renormalization group approach

Number of points in a cluster of a given eigenvalue

- Eigenmodes are localized clusters ("phonon localization")
- Size of clusters diverges at low frequencies

Amir, Oreg and Imry, Localization, anomalous diffusion and slow relaxations: a random distance matrix approach, PRL (2010)

Electron glass aging-experimental protocol

Step I

System equilibrates for long time

Step II

V_g is changed, for a time of t_w.

Throughout the experiment

Conductance is measured as a function of time.

Data: Ovadyahu et al.

Assume a parameter of the system is slightly modified (e.g. V_g) After time t_w it is changed back. What is the repsonse?

Initially, system is at some local minimum

Assume a parameter of the system is slightly modified (e.g. V_g) After time t_w it is changed back. What is the repsonse?

At time t=0 the potential changes, and the system begins to roll towards the new minimum

Assume a parameter of the system is slightly modified (e.g. V_g) After time t_w it is changed back. What is the repsonse?

At time t_w the system reached some new configuration

Assume a parameter of the system is slightly modified (e.g. V_g) After time t_w it is changed back. What is the repsonse?

Now the potential is changed back to the initial formthe particle is not in the minimum! The longer t_w , the further it got away from it. It will begin to roll down the hill.

Aging – Analysis

Assume a parameter of the system is slightly modified (e.g. V_q)

After time t_w it is changed back. What is the response? $t=t_w$

Sketch of calculation

If a and b configurations are close enough in phase space:

$$\delta n(t = t_w) \sim \sum_{\text{eigenmodes}_{\alpha}} \chi_{\alpha} e^{-\lambda_{\alpha} t_w} \left| V_{\alpha} \right\rangle \underset{\text{modes are independent and contribute uniformly}}{\sum_{\text{eigenmodes}_{\alpha}}} \sum_{\text{eigenmodes}_{\alpha}} e^{-\lambda_{\alpha} t_w} =$$

Logarithmic relaxation during step II

Time *t* after the perturbation is switched off:

$$\delta n(t) \sim \sum_{\text{eigen modes } \alpha} \chi_{\alpha} (1 - e^{-\lambda_{\alpha} t_{w}}) e^{-\lambda_{\alpha} t} \mid V_{\alpha} > = f(t + t_{w}) - f(t)$$

Full aging

Only 1/2 distribution yields full aging!

See also: T. Grenet et al. Eur. Phys. J B 56, 183 (2007)

Aging Protocol - Results

Amir, Oreg and Imry, PRL 2009

Detailed fit to experimental data

- Full aging
- Deviations from logarithm start at t/t_w

Amir, Oreg and Imry, PRL (2009)

Full aging and universality

Amir, Oreg and Imry, to be published

Deviations from full aging

Porous Silicon data (S. Borini)

Connection to 1/f noise?

Amir, Oreg, and Imry arXiv:0911.5060, Ann. Phys. 2009

Langevin Noise
$$\longrightarrow \frac{d\delta \vec{n}}{dt} = A \cdot \delta \vec{n} + \vec{f}$$

Equipartition theorem: each eigenmode should get $\langle E \rangle = kT/2$

The mean-field equations can be derived from a free energy:

$$F = \sum_{i} \varepsilon_{i} n_{i} + \sum_{i \neq j} e^{2} \frac{n_{i} n_{j}}{r_{ij}} + \sum_{i} n_{i} \log n_{i} + (1 - n_{i}) \log(1 - n_{i}) + \mu N$$

From this we can find the noise correlations matrix:

$$\langle f_i f_j \rangle = -A \cdot W, \ W_{ij} = \delta_{ij} n_i^0 (1 - n_i^0)$$

The $1/\lambda$ spectrum then leads to a 1/f noise spectrum:

$$\langle \delta n^2 \rangle_f = \frac{1}{N} \sum_{\lambda} \frac{1/\lambda}{1 + \langle \omega / \lambda \rangle^2} \longrightarrow 1/f$$
B.I. Shklovskii,

Solid State Commun (1980)

K. Shtengel et al.,

PRB (2003)

Conclusions

- Statics: Coulomb gap, Steady-state: Variable Range Hopping
- Dynamics near locally stable point: many slow *localized* modes, $\sim \frac{1}{\lambda}$ distribution.

How universal? We believe: a very relevant RMT class.

One obtains full aging, with relaxation approximately of the form :

$$\delta \sigma \sim \log[1 + \frac{t_w}{t}]$$

More details:

Phys. Rev. B 77, 1, 2008 (local mean-field model)

Phys. Rev. Lett. 103, 126403 (2009) (aging properties)

Phys. Rev. B 80, 245214 2009 (variable-range hopping)

Ann. Phys. 18, 12, 836 (2009) (1/f noise)

Phys. Rev. Lett. 105, 070601 (2010) (exponential matrices – solution)

Electron glass dynamics – Review (soon online)