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Slow relaxations in nature

What are the ingredients leading

to slow relaxations?

Electron glass- Experimental system

Logarithmic relaxations for 5 days!

string

mass

W. Weber, Ann. Phys. (1835)

D. S. Thompson, J. Exp. Bot. (2001)

Ovadyahu et al.



Electron glass aging– experimental protocol

Step II

Vg is changed, for a time of tw.

Step I

System equilibrates for long time

Throughout the experiment

Conductance is measured as a 
function of time. 

Experiment
Theory

Data: Ovadyahu et al.

A. Vaknin and Z. Ovadyahu and M. Pollak, PRL 2000



Aging and universality

]/1log[ ttw+

Amir, Oreg and Imry, to be published



The model

• Strong localization due to disorder  

randomly positioned sites, on-site disorder.

• Coulomb interactions are included

• “Phonons” induce transitions between configurations.

• Interference (quantum) effects neglected.

e.g: 

Pollak (1970)

Shklovskii and Efros (1975)  

Ovadyahu and Pollak (2003)

Muller and Ioffe (2004)

phonon



“Local mean-field” approximation - Dynamics

• The system reaches a locally stable point (metastable state).

• Many metastable states, each manifesting a Coulomb gap

(“Pseudo-ground-states”, Baranovski et al., J. Phys. C, 1979)

At long times (Statics):
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• includes the interactions

• N is the Bose-Einstein distribution

• ξ - the localization length

EΔ

AA, Oreg and Imry, PRB (2008)



Miller-Abrahams resistance network (no interactions)

A. Miller and E. Abrahams, (Phys. Rev. 1960)
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Equilibrium rates,

obeying detailed balance

“Local mean-field” approximation – Steady State

Generalization

1) Find ni and Ei such that the systems is in steady 
state.

2) Construct resistance network.



VRH (Mott) to E-S Crossover 
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±Slope is ~0.49   0.02

Slope is ~0.34   0.01±



We saw: approach works well for statics  & steady-states

Moving on to dynamics…
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“Local mean-field” approximation - Dynamics
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Solution near locally stable point

Close enough to the equilibrium (locally) stable point, 

one can linearize the equations, leading to the equation:

nA
dt
nd r
r

δδ ⋅=

All eigenvalues are real and negative

For low temperatures, near a local minimum, 

second term is negligible 
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Eigenvalue Distribution

Solving numerically shows a distribution proportional to        : λ
1

∫ −−⎯→⎯∑ −− )log(~)( min tdePe E
tt λγλλ λλ

λ

Eigenvalues Eigenvalue distribution



1) Choose N points randomly and uniformly in a d-dimensional cube.

Digression: What are Random Distance Matrices?

I. M. Lifshitz, Adv. Phys (1964).
Mezard, Parisi and Zee, Nucl. Phys. (1999)
Bogomolny, Bohigas, and Schmit, J. Phys. A: Math. Gen. (2003).



1) Choose N points randomly and uniformly in a d-dimensional cube.

2) Define the off-diagonals of our matrix as:
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1) Choose N points randomly and uniformly in a d-dimensional cube.

2) Define the off-diagonals of our matrix as:

3) Define diagonal as:

ξ/
, )(,)( r

ijji erfrfA −==

sum of every column vanishes

(will come from a conservation law) 

(Euclidean distance)

∑
≠

−=
ij

jiii AA ,,

rij

r/ξε =

Digression: What are Random Distance Matrices?

I. M. Lifshitz, Adv. Phys (1964).
Mezard, Parisi and Zee, Nucl. Phys. (1999)
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1) Choose N points randomly and uniformly in a d-dimensional cube.

2) Define the off-diagonals of our matrix as:

3) Define diagonal as:

ξ/
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(will come from a conservation law) 

(Euclidean distance)
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Q: What is the eigenvalue distribution?

What are the eigenmodes?

r/ξε =

Digression: What are Random Distance Matrices?



Solution near locally stable point

Close enough to the equilibrium (locally) stable point, 

one can linearize the equations, leading to the equation:

nA
dt
nd r
r

δδ ⋅=

All eigenvalues are real and negative

For low temperatures, near a local minimum, 

second term is negligible 
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Distance matrices – Motivation
Relaxation in electron glasses
Amir,  Oreg and Imry, PRB 2008

Anomalous diffusion
Scher and Montroll, PRB 1975
Metzler, Barkai and Klafter, PRL 1999

Localization of phonons
Ziman, PRL 1982
Vitelli et al., PRE 2010

Photon propagation in a gas
Akkermans, Gero and Kaiser, PRL 2008



Results – 2D



Results

λ/1



Results
(no fitting parameters)



Results
(no fitting parameters)



Exponential Distance Matrices- results

(arbitrary dimension d)

Cd=volume of a d-dimensional sphere,/ rξε =

• Logarithmic corrections to 

• In dimensions > 1:  cutoff at 
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Examples of eigenmodes of a 5000X5000 matrix

3’rd 

3000

86.1~ − 1000

4000

λ 05.0~ −λ

4106.9~ −⋅−λ 5105.8~ −⋅−λ

Structure of eigenmodes



Eigenvalue distribution 
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Renormalization group approach

Number of points in a cluster of a given eigenvalue



• Eigenmodes are localized clusters (“phonon localization”)

• Size of clusters diverges at low frequencies

+

Number of points in a cluster of a given eigenvalue

Eigenvalue distribution 

Renormalization group approach

)|2/(|log
2~

λε −dddC

c en

RG approach

Amir, Oreg and Imry, Localization, anomalous diffusion and slow relaxations:
a random distance matrix approach,  PRL (2010)



Electron glass aging– experimental protocol

Step II

Vg is changed, for a time of tw.

Step I

System equilibrates for long time

Throughout the experiment

Conductance is measured as a 
function of time. 

Experiment
Theory

Data: Ovadyahu et al.



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

Initially, system is at some local minimum



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

At time t=0 the potential changes, 

and the system begins to roll towards the new minimum



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

At time tw the system reached some new configuration



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

Now the potential is changed back to the initial form-

the particle is not in the minimum!

The longer tw, the further it got away from it.

It will begin to roll down the hill.



Aging – Analysis
Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the response?

Logarithmic relaxation during step II 

Full aging
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Sketch of calculation

modes are
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See also: T. Grenet et al. Eur. Phys. J B 56, 183 (2007)



Aging Protocol - Results
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Amir, Oreg and Imry, PRL 2009



Amir, Oreg and Imry, PRL (2009)

• Full aging

• Deviations from logarithm start at

Detailed fit to experimental data

wtt /



Full aging and universality

]/1log[ ttw+

Amir, Oreg and Imry, to be published



Deviations from full aging

Porous Silicon data (S. Borini)

][)]([ minmin tEittEi w λλ −+



Connection to 1/f noise?

Equipartition theorem: each eigenmode should get 2/kTE =
The mean-field equations can be derived from a free energy:
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Solid State Commun (1980)

K. Shtengel et al., 

PRB (2003)

Amir, Oreg, and Imry
arXiv:0911.5060, Ann. Phys. 2009 

http://lanl.arxiv.org/abs/0911.5060


Conclusions
• Statics: Coulomb gap, Steady-state: Variable Range Hopping

• Dynamics near locally stable point:  many slow localized modes,           distribution. 

How universal? We believe: a very relevant RMT class.

• One obtains full aging, with relaxation approximately of the form :

λ
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More details:

Phys. Rev. B 77, 1, 2008 (local mean-field model)

Phys. Rev. Lett. 103, 126403 (2009) (aging properties)

Phys. Rev. B 80, 245214 2009 (variable-range hopping)

Ann. Phys. 18, 12, 836 (2009) (1/f noise)

Phys. Rev. Lett. 105, 070601 (2010) (exponential matrices – solution)

Electron glass dynamics – Review (soon online)
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