Simulations of shear yielding of glassy solids: Effects of Age, Rate and Temperature

Jörg Rottler
Princeton University

in collaboration with Mark O. Robbins
Johns Hopkins University

KITP workshop on
Friction, Fracture and Earthquake Physics
(August 2005)

Shear and flow of glassy matter

- “Hard glasses”: polymers (PS, PC), bulk metallic glasses (BMG)
- “Soft glasses”: colloids, pastes, emulsions, foams

Some fundamental questions:

- What is the elementary mechanism?
 Shear transformation zone (amorph) Dislocation (crystal)

- What leads to shear localization (bands)?

- Is "jamming" a common feature of these materials?
 What is the nature of the jammed state? Can we "unjam" by applying stress?

Nonequilibrium phase diagram?

A.J.Liu/S.R.Nagel,
Origin of engineering interest in glassy materials

- yield stress of glassy metals can be twice that of steel
- elastic range is much higher
- very promising materials for structural applications

Nonequilibrium molecular dynamics

Bead spring model for polymers: Binary (80% r₁ - 20% r₂) LJ mixture:

- Lennard-Jones (LJ) potential \(V_{LJ} \) → van der Waals interaction, energy \(u_0 \sim \text{meV} \), length \(d \sim \text{nm} \), time \(\sim \text{ps} \), max force \(f_{LJ} \)
- Covalent bonds for polymers
→ computer glass transition and amorphous glassy state below \(T_g \sim 0.3 \ u_0 / k_B \)

- Molecular dynamics: \(\ddot{r}_i = \sum F_{ij} / m_i \)
 integrate classical equations of motion of many-particle system
- Follow particle motion, measure local or integrated response of system
Deformation of glasses: simulation and experiment

~ 30000 particles

Maximum or overshoot:
yield stress τ^y

unrecoverable strain ε_r

Bulk Metallic Glass
($Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$)

Polymer glass (PMMA)

Quinson et al., J. Mat. Sci. 32, 1371 (1997)

Microscopic plastic events during shear

- divide solid into small volume elements
- calculate shear stress and nonaffine disp. $\Sigma_i(r_i - \varepsilon_i r_i)^2$ within each bin
- record number of jumps in a small strain interval as a function of strain
- # and size of stress jumps rises rapidly (exponentially) as peak stress is approached, but present at small strains \rightarrow irreversibility before macroscopic yield point

\rightarrow no single energy barrier, time between jumps strain-dependent!

When does a glassy solid yield?

- Many amorphous materials obey a pressure-modified von Mises criterion:
 \[
 \tau^y_{\text{dev}} = \tau_0 + \alpha p = \frac{1}{3} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]^{1/2} - (\sigma_1 + \sigma_2 + \sigma_3)/3
 \]

- Assumes isotropic solid

![Loading with general stress states](image)

- when shear localization on a plane occurs, other criteria are suggested:
 - pressure-modified Tresca criterion:
 \[
 \tau_{\text{max}} = \frac{1}{2} |\sigma_1 - \sigma_2|_{\text{max}} = \frac{3}{\sqrt{2}} (\tau_0 + \alpha p)
 \]
 - Mohr-Coulomb criterion:
 \[
 \tau_y = \tau_0 - \sigma_n \tan \Phi
 \]

Obeyed by model glasses, but pbc prevent localization

Strain rate/temperature dependence of \(\tau^y \)

- polymer and binary mixture: logarithmic rate dependence
 \[
 \tau^y_{\text{dev}} = \tau_0 + s \ln(\dot{\varepsilon})
 \]
 or power law
 \[
 \tau^y_{\text{dev}} = \tau_0 + \dot{\varepsilon}^n
 \]

- Offset \(\tau_0 \) varies linearly with \(T \)
- Prefactor/exponent independent of \(T \), but slightly larger for polymer glass

- Note: all states prepared through rapid quench and very short "waiting time" \(t_w = 750 \tau_{\text{LJ}} \) before straining

Aging in structural glasses

- below T_g, glasses are not stationary, but continue to evolve configurational degrees of freedom (aging)

\[T = 0.2 \frac{u_0}{k_B} \]

\[T_g \approx 0.3 \frac{u_0}{k_B} \]

- Time-translation invariance broken, quantities depend on t and t_w
- Glass compactifies \textit{logarithmically} in absence of deformation when maintaining zero hydrostatic pressure
- strongly temperature dependent, no change at $T=0.01 \frac{u_0}{k_B}$
 \[\rightarrow \text{aging disappears at lower T!} \]

Effect of aging on shear yield stress

- yield stress also increases \textit{logarithmically} with waiting time
 (see also Varnik/Bocquet/Barrat, J. Chem. Phys. (2004))
- slope independent of shear rate
- qualitatively consistent with S(oft) G(lassy) R(heology) model
Temperature and Aging

- logarithmic behavior at all T
- slope variation with T broadly consistent with linear behavior
- importance of thermodynamic temperature for aging

Combined rate/age effects at $T=0.2 \ u_0/k_B$

- $t_w=750,000 \ \tau_{LJ}$: weak logarithmic behavior at smaller rates
- stresses and rate sensitivity strongly increase with age
- ideal logarithmic behavior at $t_w=750,000 \ \tau_{LJ}$
A phenomenological model

- assume response depends on state variable $\theta(t)$ as in friction models
 \[\tau^y = \tau_0 + s_0 \ln(\theta) + s_1 \ln(\dot{\epsilon}) \]

- specify evolution of $\theta(t)$: here $\dot{\theta} = f(\varepsilon_{zz}, T)$ and integrate to yield
 \[\tau^y = \tau_0 + s_0 \ln(t_w + \alpha / \dot{\epsilon}) + s_1 \ln(\dot{\epsilon}) \]

- Note:
 - if f independent of strain: $\alpha = \varepsilon^y$ (strain at yield)
 - if rejuvenation before yield: $\alpha < \varepsilon^y$
 - if strain accelerates aging: $\alpha > \varepsilon^y$

- Predicts "universal" plot in $\dot{\epsilon}_{tw}$

\[\tau^y + (s_1 - s_0) \ln(t_w / t_w^0) = \tau_0 + s_0 \ln(\dot{\epsilon}_{tw} + \alpha) + (s_1 - s_0) \ln(\dot{\epsilon}_{tw}) \]

- Note: description does not invoke simple relations between "relaxation time" and waiting time.

Universal behavior

- data collapses onto single curve when rate is rescaled with t_w AND shifted by waiting time dependent constant

- regime I: t_w irrelevant, only aging during straining. $\tau^y \propto (s_1 - s_0) \ln(\dot{\epsilon}_{tw})$

- regime II: no intrinsic dynamics before yielding. $\tau^y \propto s_1 \ln(\dot{\epsilon}_{tw})$

- crossover when $t_w = \alpha / \dot{\epsilon}$

(JR and M. O. Robbins, condmat/0506586)
Peak stress vs. steady shear flow stress

- in steady shear, system is constantly stirred ("rejuvenated"); never older than $1/\dot{\varepsilon}$

![Graph showing peak stress vs. steady shear flow stress for different temperatures](image)

(JR and M. O. Robbins, PR E (2003))

- in regime I, the (transient) peak stress should start to behave like steady state flow stress. Slopes are indeed comparable.

- slope indep. of T: role of effective temperature in driven glass?

Conclusions

- simple molecular models for polymers and binary glasses capture phenomenology of elastoplastic deformation

- pressure-modified von Mises shear yield criterion $\tau_y = \tau_0 + \alpha p$ holds for general triaxial loading conditions and homogeneous deformation

- rate and temperature dependence exhibits complex interplay with the intrinsic "aging" dynamics of the glass

- in general logarithmic rate dependence, but slope depends on age and changes when age \sim time to yield.

- rate-state model based on internal state variable provides unifying description of age/rate/temperature effects

\rightarrow Future work: better connection between coarse-grained models and molecular level processes