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Brief Interlude on Dissipation

The principal result of reviewing the experimental data is
that for many solids...the specific dissipation function is in-
dependent of frequency– a generalization well known to engi-
neers but largely neglected in physical theories of attenuation,
Knopoff and MacDonald, 1958
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Hey, it’s a workshop,
so let’s go off topic
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Two Possible Scenarios for Dissipation
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α = gπω/4c

v = 1− (g/2) ln[(ω2 + /b2
max)/(ω

2 + b2
min)]

(Ostrovsky,
Johnson,
Guyer)

(Jackle, 1972)



c©2005, Michael P Marder

Continuum Fracture Mechanics

• Initiation of fracture depends upon energy (Griffith)

• Energy and (singular) stress criteria are identical (Ir-
win)

• Structure of stress near crack tips is universal (Irwin
and Rice)

Process zone
Crack

Universal singularity

And now back to what I was asked to speak about....
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Continuum Fracture Mechanics

• Microscopic unknowns bundled into one number —
toughness – that can be tabulated from tests on stan-
dard specimens.

• Crack driving forces computed through continuum me-
chanics and finite elements in arbitrary geometries
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Dynamic Fracture Mechanics

• Rough equations of motion (Mott 1948, Dulaney and Brace,
1960)

• Dynamic calculation of stress fields (Yoffe 1951)

• Limiting speed 60% of shear wave speed (Schardin, 1955)

• Rayleigh wave speed should be limit (Stroh, 1957)

• Exact equation of motion: crack tip has no inertia (Kostrov,
1966 Eshelby, 1969)

• Extension of exact results to Mode I (Freund, Kostrov,
1974)
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Dynamic Fracture Mechanics

Net results:

• For semi-infinite crack in infinite plate, can compute en-
ergy flowing to tip of straight crack moving with velocity
v(t) for arbitrary time-dependent loading on crack faces.

• Crack velocity and path are given.

• Assumption plate is infinite is not mere technicality.

• Energy cost function Γ(v) closes theory.

• Many felt Γ(v) had to be largely independent of velocity,
but nothing in structure of theory demanded this
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Crack Paths

Gol’dstein and Salganik, 1974

• Crack moves along a path such that KII vanishes

• Energy consumption maximized in this direction

Seed cracks placed in mixed mode loading kink in expected
direction
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Crack Paths

• Equation of motion for small deviations from straight-
ness (Rice and Cotterell, 1980)

• Upper cutoff on curvature and extension to three di-
mensions (Sethna and Hodgdon, 1993)

• Generalization to dynamic fractures (Adda-Beddia,
Ben-Amar, and Lund 1999; Oleaga, 2001)
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Continuum Summary

• Industrial applications rely mainly on simple strength
of materials analysis, or in critical applications on con-
tinuum fracture mechanics

• Continuum analysis handles complex geometries and
loading better than any other framework.

• Hence beliefs widely held though rarely stated:

Real materials are not made of atoms!

or

In fracture atoms matter, for materials that don’t!
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Lacking from Continuum

• Static Cracks: Compute criterion for initiation (usually
one number)

• Dynamic Cracks: Compute speed from driving force
(usually a function of one variable)

• ... and probably for both Static and Dynamic: Compute
crack path (functions of several variables)
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Physics of fracture

A physically based theory of brittle fracture cannot be
created entirely within a continuum description.
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Physics of fracture

A physically based theory of brittle fracture cannot be
created entirely within a continuum description.

The cohesive forces between atoms rise and fall on the
scale of atomic separations.
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Physics of fracture

A physically based theory of brittle fracture cannot be
created entirely within a continuum description.
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Physics of fracture

A physically based theory of brittle fracture cannot be
created entirely within a continuum description.

Modeling should not be grid-independent; nature has es-
tablished a grid at the atomic scale and fracture depends
upon it.

The cohesive forces between atoms rise and fall on the
scale of atomic separations.
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Physics of fracture

A physically based theory of brittle fracture cannot be
created entirely within a continuum description.

Modeling should not be grid-independent; nature has es-
tablished a grid at the atomic scale and fracture depends
upon it.

Analytical and numerical techniques allow one to move well
beyond continuum analysis.

The cohesive forces between atoms rise and fall on the
scale of atomic separations.
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Ideal Brittle Crystal

m~̈ui =
∑
j

[
~f (~uji) + ~g(~̇uji, ~uji)

]
Mass

Acceleration

|~ f
(u

)|

u→

Kelvin DissipationSnapping Bonds

a uc

~g( ˙~uji, ~uji) = ~̇uji θ(uc − uji)

MPM, International Journal of Fracture 130 517-555 (2004)
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Ideal Brittle Crystal

m~̈ui =
∑
j

[
~f (~uji) + ~g(~̇uji, ~uji)

]
Mass

Acceleration

|~ f
(u

)|

u→

Kelvin DissipationSnapping Bonds

a uc

~g( ˙~uji, ~uji) = ~̇uji θ(uc − uji)

This model can be solved exactly when uc − a� a
(Slepyan, 1980... MPM, 1995...Kessler and Levine...)

MPM, International Journal of Fracture 130 517-555 (2004)
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Example: for triangular lattice in Mode III

üy
i =

2c2

3a2

∑
j∈n(i)

(
uy

ij + βu̇y
ij

)
θ(λf − uij). (1)

complete solution reads

ṽ = v/c, β̃ = βc/a; z =
3 − cos(ω/ṽ) − 3ω2/[4(1 − iβ̃ω)]

2 cos(ω/2ṽ)
(2)

y = z +

√
z2 − 1with abs(y) > 1, ; F (ω) =

{
y[N−1] − y−[N−1]

yN − y−N
− 2z

}
cos(ω/2ṽ) + 1 (3)

Q(ω) =
F

F − 1 − cos(ω/2ṽ)
; λ̃y = λy/

√
(4λ2

f
− λ2

x)/3 (4)

λ̃y =
1√

2N + 1

exp

[
−

∫
dω′

4π

{
1

iω′(1 + β̃2ω′2)

[
ln Q(ω

′) − ln Q(ω′)
]

+
β̃ ln |Q(ω′)|2

1 + β̃2ω′2

}]
.

Ideal Brittle Crystal
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Upper row of atoms held rigid

Lower row of atoms held rigid
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Scaling of Steady States
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Wiener-Hopf techniques allow 800,000,000 atom MD... on a
laptop in 30 minutes
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Scaling of Steady States
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Application I: single-crystal silicon

Silicon is “well known” to cleave cleanly along the (111)
and (110) planes, but not at all along (100)

Rough failure along 100Clean failure along (110)
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Theory and experiment for single crystal silicon may finally agree... but
it seems to take quantum mechanics!

Application I: single-crystal silicon
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Application II: Crack-tip instability
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Application III: Self-healing pulses

0.5cs < v < 0.8cs
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Gerde and Marder, Nature 2001
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PRL 94 048001
(2005)

cond-mat/0504613

Application IV: Rupture of Rubber
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λ̃y ≡ λy/
√

(4λ2
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x)/3

Discrete Solution, N = 20000

Application IV: Rupture of Rubber
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Application V: Crack paths in crystal
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Application V: Crack paths in crystal
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Application V: Crack paths in crystal

Expecting to find faceting that traced
out continuous curves, we instead
found a self-affine fractal along direc-
tion of crack motion
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Is principle of local symmetry always correct?

In a material that is isotropic and homogeneous at
the macroscopic level, do cracks always travel in
the direction it predicts?

Answer: no. For example, cracks can follow crystal
planes that are completely invisible to continuum
elasticity

Application V: Crack paths in crystal
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Hold lower boundary rigid

Displace upper boundary by (δx, δy)

In each case, compute shear stress versus angle, find where KII vanishes

Application V: Crack paths in crystal
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Hold lower boundary rigid

Displace upper boundary by (δx, δy)

By varying Kelvin dissipation, for fixed loading conditions, one can obtain
different steady velocity solutions.

Application V: Crack paths in crystal



c©2005, Michael P Marder

Hold lower boundary rigid

Displace upper boundary by (δx, δy)

Take height N = 200, uc = 1.2, displace top by δy = 20, and δx = .23δy. Set
Kelvin dissipation to β = 2 and then to β = .02.

Application V: Crack paths in crystal
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Hold lower boundary rigid

Displace upper boundary by (δx, δy)

Obtain cracks moving at v/cR = .01 and v/cR = .83.

Application V: Crack paths in crystal
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Hold lower boundary rigid

Displace upper boundary by (δx, δy)

In each case, compute shear stress versus angle, find where KII vanishes

Application V: Crack paths in crystal
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Crack with v = .01cR, should kink at −16◦

Application V: Crack paths in crystal
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Crack with v = .83cR, should kink at −57◦

Application V: Crack paths in crystalApplication V: Crack paths in crystal
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However, both cracks travel straight along horizontal axis forever

Application V: Crack paths in crystal
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Atoms matter for fracture

Range of cohesive forces and atomic spacings are the same...this
causes trouble for continuum theories of brittle crack tips.
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Atoms matter for fracture

Experiments and computations in crystals clearly show macro-
scopic consequences of microscopic arrangement

Range of cohesive forces and atomic spacings are the same...this
causes trouble for continuum theories of brittle crack tips.
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Atoms matter for fracture

Experiments and computations in crystals clearly show macro-
scopic consequences of microscopic arrangement
Elimination of crack singularities by discreteness continues to be
important even in polymeric materials, where separating units
are much larger than atoms.

Range of cohesive forces and atomic spacings are the same...this
causes trouble for continuum theories of brittle crack tips.
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Atoms matter for fracture

Atomic-scale studies answer questions about crack initiation,
speed, and direction to complement continuum studies involving
complex geometries and loading.
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