

Noam Bernstein Center for Computational Materials Science Naval Research Laboratory Washington, DC

Collaborators:

Daryl Hess (NRL, NSF)

E. Kaxiras (Harvard)

J. Q. Broughton (NRL, JP Morgan)

F. F. Abraham (IBM)

Funding: ONR, NRL DOD HPCMP, CHSSI

OVERVIEW

Fracture: the canonical multiscale materials problem brittle vs. ductile fracture

Coupling of length scales

CLS: first approach method results lessons learned

DCET: new approach method results

Conclusions

FRACTURE

Structural materials: keep their shape under mechanical load What happens when load is too large? Failure . . .

Technologically important:

- Can we predict failure (ab initio)?
- How can we control failure properties?

Scientifically interesting:

Why do materials break in the way they do?

MODES OF FAILURE

Real materials aren't continuous

Atomistic details control action at crack tip

Two possible failure modes:

Brittle:

- Crack remains sharp
- Singularity at crack tip remains
- No damage except crack
- Minimal amount of energy dissipated

Ductile:

- Crack becomes blunt
- Material deforms non-reversibly (≡ plasticity)
- Dislocations propagate into material
- A lot of energy dissipated

ductile

EXPERIMENT VS. SIMULATION

What we want: microscopic understanding of processes

What we can get from experiment:

- crack speed as a function of loading (critical loading)
- morphology of exposed surface (fractography)
- atomic configuration (only at surface, very slow cracks)

What can't we get from experiment:

- perfect system (defect free, pure loading)
- view of atoms during dynamic fracture

Can simulations help?

- Perfect material, loading
- Perfect resolution view (in space, in time)
- System size, time scale
- Description of interactions

COUPLING OF LENGTH SCALES

Material properties controlled by processes over many length scales

Different processes best described by different models

Example: fracture

- Short scale 10² atoms
 - breaking atomic bonds
 - classical nuclei, quantum-mechanical bonds
- Medium scale -10^4 atoms
 - highly strained bonds
 - classical nuclei, empirical interactions
- Long scale 10^{23} atoms
 - elastic deformation
 - continuum mechanics

How can you treat all of these aspects?

SEQUENTIAL COUPLING

Fast method: continuum mechanics

- very fast, accurate but fails at crack tip
- cohesive zone: rule for behavior at crack tip
- parameters: elastic constants, surface energy

Slow method: first-principles calculations

- very slow
- accurate, rarely fails

Advantages:

- length scale much larger than atomistics
- time scale much longer than atomistics

Limits: assumptions

- type of fracture (e.g. brittle)
- process at crack tip known
- More generally: coarse-grain theory is known

CONCURRENT COUPLING

Concurrent: large system with a fast method, limited applicability where needed, use a slower, more accurate method

- Fracture: QM for crack tip, bulk sample with empirical potentials
- Friction: QC for surface interaction, elasticity for contact forces

Need

localized region for slower method

Especially important for dynamics, changing boundary conditions

ORIGINAL CLS METHOD

Three regions, three methods

- \bullet V_{FE} Continuum elasticity finite elements
- ullet V_{EP} Empirical potential molecular dynamics
- V_{TB} Tight-binding molecular dynamics Force law: simple QM (approx. solution overlapping passivated clusters)

Stability: well defined total energy, dynamics for each region in sync

(Abraham et al. Comp. in Phys. 1998, Abraham et al. Europhys. Lett. 1998, Broughton et al. PRB 1999)

ORIGINAL CLS RESULTS

4000 Å \times 3600 Å \times 11 Å About 1.5 \times 10⁶ atoms About 3 \times 10⁵ FE nodes \Leftrightarrow 7.7 \times 10⁶ atoms

ORIGINAL CLS RESULTS

4000 Å \times 3600 Å \times 11 Å About 1.5×10^6 atoms About 3×10^5 FE nodes $\Leftrightarrow 7.7 \times 10^6$ atoms

Elastic waves
Voids
Amorphous tendrils
(dislocations)

Not brittle
No effect from TB

Crititcal energy release rate G for fracture:

simulation: 8–130 J/m³ (Marder et al., Abaraham et al.)

experiment: $\approx 2.5 \text{ J/m}^3$ (Hauch *et al.*)

Experiment: not much energy for dislocations/voids/disorder

DCET

(No finite elements continuum, just molecular dynamics)

TB forces from constrained electronic Green's function

Mechanical coupling:

- EP atoms: included in EP calculation, forces from EP
- TB atoms: included in TB calculation, forces from TB
- boundary atoms: included in both calculations, forces from EP

No well defined total energy.

(Bernstein Europhys. Lett. 2001)

FRACTURE WITH TB

Couple empirical potential (EDIP) and TB

Continuum solution for fixed strain, top/bottom boundary fixed

 \sim 50000 EP atoms \sim 1000 TB atoms

400 Å \times 250 Å \times 12 Å, (80 Å \times 65 Å shown)

Red: EP

Green: TB

Blue: Boundary

(Bernstein and Hess PRL 2003)

BRITTLE FRACTURE

Blue: sim., Black: exper. (Hauch et al. PRL 82), Red: EP (approx.)

Vertical line: Griffith criterion for brittle fracture

Onset approximately at Griffith criterion

Limiting speed is $\approx 1/2$ Rayleigh speed

DISCUSSION

What's different?

I.e. what are the fundamental materials parameters that control the nature of fracture?

ENERGIES ...

Energetic view of brittle vs. ductile: Rice criterion

Griffith: brittle fracture when energetically favored

Rice: emit dislocations when energetically favored

Process (cleavage, dislocation emission) with lower critical load wins

ullet γ_s surface energy : make new crack surface

ullet γ_{us} unstable stacking fault energy : make dislocations

	LDA	BK-TB	EDIP	SW
$\overline{c_{11}}$	166	145	175	162
c_{12}	63.3	84.5	65	82
c44	79.3	53.4	71	60
γ_s (111) ideal	1.7	1.0	1.1	1.4
γ_{us} glide relaxed	1.9	2.5	1.9	3.1
γ_{us} shuffle relaxed	1.7	1.1	1.3	8.0
γ_s/γ_{us} (glide)	0.90	0.40	0.59	0.45
γ_s/γ_{us} (shuffle)	1.02	0.90	0.85	1.71

Apparently not Rice criterion

(LDA from Kaxiras and Duesbery, EDIP and SW from Justo et al.)

... VS. FORCES

(Abraham, Marder)

Force depends on energy/distance

Dislocations (γ_{us}): distance set by lattice, same for all models Surfaces (γ_s): distance set by range of interactions in model

- Determined by physics (covalent vs. Coulomb)
- Restricted by model (DFT vs. empirical potentials)

WHAT CAUSES THE DIFFERENCE?

Energetics: NO

Rice criterion comparable

clue: first failure of EPs (before onset of ductile fracture):

Just above Griffith criterion:

EP crack won't propagate

TB crack does

Stress induced lattice trapping:

Brittle fracture in EP definitely supressed

Why doesn't this happen in TB?

MODEL FOR LATTICE TRAPPING

(Curtin, Gumbsch and Perez)

As crack is propagating forward one lattice spacing: separate: surface energy (increasing), elastic energy (decreasing)

- Calculate actual energy barrier for propagation (elastic band)
- Subtract decohesion energy (from separation of slabs)
- Extract elastic energy contribution (normalized)

RESULTS OF MODEL

Fit elastic energy to empirical potentials: Good fit to all EPs after rescaling

Results:

- Energy barrier is apparent
- Brittle models:
 fracture when barrier goes to zero
- Ductile models:
 barrier at dislocation nucleation load

Model works – predicts load for onset of brittle fracture applies to EP and TB

IMPLICATIONS OF MODEL

Separation into elastic energy, decohesion terms works

- bond breaking process is "local"
 i.e. unaffected by strain gradient, asymetry
- (scaled) elastic energy is model independent
 i.e. linear elasticity holds except for crack tip shape

Usual view: one length scale — interaction range

Two length scales

- bond breaking distance (TB 2–3 times larger vs. EP)
- elastic relaxation length (TB 25–40% smaller vs. EP)

Both length scales conspire to reduce barrier for TB

CONCLUSIONS

Concurrent coupling of length scales:

Benefits: combination of accuracy and speed

Insight into fracture mechanics:

- Energies matter
- Energy barriers at crack tip are essential
 - range of interaction
 - detailed shape of crack tip

Future directions

Finite temperature effects

Fracture in more complex, techn. relevant systems (metals?)

Friction and stiction: (NSF NIRT – JHU, Naval Academy)

- Big limitation for MEMS
- Interaction between surface chemistry and mechanical loading