behavior in a damage rheology model A generalized law for aftershock

Yehuda Ben-Zion¹ and Vladimir Lyakhovsky² 1. University of Southern California 2. Geological Survey of Israel

Outline

- · Brief background on aftershocks
- Brief background on the employed damage rheology
- 1-D Analytical results on aftershocks
- 3-D Numerical results on aftershocks
- Discussion and Conclusions

Main observed features of aftershock sequences:

1. Aftershocks occur around the mainshock rupture zone

5. Aftershocks behavior is NOT universal!

2. Aftershock decay rates can be described by the modified Omori law:

$$\Delta N/\Delta t = K(c + t)^{-p}$$

However, aftershock decay rates can also be fitted with exponential and other functions (e.g., Kisslinger, 1996).

3. The frequency-size statistics of aftershocks follow the GR relation:

$$logN(M) = a - bM$$

4. The largest aftershock magnitude is typically about 1-1.5 units below that of the mainshock (Båth law).

Existing aftershock models:

- ·Migration of pore fluids (e.g., Nur and Booker, 1972)
- Stress corrosion (e.g., Yamashita and Knopoff, 1987)
- ·Criticality (e.g., Bak et al., 1987; Amit et al., 2005)
- ·Rate- and state-dependent friction (Dieterich, 1994)

Fault patches governed by dislocation creep (Zöller et al., 2005).

Is the problem solved?

The above models focus primarily on rates.

Some are "conceptual" rather than quantitative.

None explains properties (1)–(5), including the observed spatio-temporal variability, in terms of basic geological and physical properties.

This is done here with a damage rheology framework and realistic model of the lithosphere.

Non-linear Continuum Damage Rheology

The employed damage rheology accounts for 3 universal strain: aspects of rock deformation under large

Mechanical aspect:

The elastic moduli depend on the density of microcracks (damage)

Kinetic aspect:

The microcrack density (damage) evolves with ongoing deformation

Dynamic aspect:

Brittle instability at a critical level of damage (when dynamic প্ত the energy function losses convexity weakening correction) sensitivity of the elastic moduli to distributed cracks and sense of loading. Mechanical aspect:

This is accounted for by generalizing the strain function of a deforming solid energy

The elastic energy U is written as:

$$U = \frac{1}{\rho} \left(\frac{\lambda}{2} I_1^2 + \mu I_2 - \left(\gamma I_1 \sqrt{I_2} \right) \right)$$

 $I_2 = \varepsilon_{ij}\varepsilon_{ij}$ = S_{KK} Where λ and μ are Lame constants; y is an additional elastic modulus

$$\sigma_{ij} = \rho \frac{\partial U}{\partial \epsilon_{ij}} = \left(\lambda - \left(\gamma \frac{\sqrt{I_2}}{I_1}\right) I_1 \delta_{ij} + \left(2\mu - \left(\gamma \frac{I_1}{\sqrt{I_2}}\right) \epsilon_{ij}\right)$$

$$\xi = \frac{I_1}{\sqrt{I_2}}$$

Origin of the generalized energy function

a general strain energy function having any second-order term of the Consider atype

The limit values x = 0 and x = 1 are associated with the standard 2 Hookean = 8_{ij}8_{ij} $0 < x < 1, l_1 = \varepsilon_{kk}, l_2$ with terms.

The relation between the mean stress (σ_{kk}) and volumetric deformation (I_1) for the assumed general form is \mathcal{R} $-\phi =$

$$\sigma_{kk} = \rho \frac{\partial U}{\partial I_1} \sim 2x I_1^{2x-1} I_2^{1-x} + \frac{2}{3} (1-x) I_1^{2x+1} I_2^{-x}$$

The first term has a nonphysical singularity for 0 < x < 1/2. In addition, for x > 1/2 the mean stress is zero $(\sigma_{kk} = 0)$ for zero volumetric strain $(I_1 = 0)$. This is not compatible with material dilation under shear loading.

1 values) 1/2 value and 0 * Thus the only exponent (other than the classical associated with realistic rock deformation is the represented by the third term in our energy function.

Kinetic aspect associated with damage evolution

and making the damage representing deriving an evolution equation for α . unit volume, Ø accounted for by state variable $\alpha(x, y, z, t)$, functions .⊑ moduli density <u>.s</u> elastic crack This

Thermodynamics

Free energy of a solid, F, is $= \mathrm{F}(\mathrm{T}, \, \mathbf{c}_{\mathrm{ij}}, \mathbf{\widehat{\omega}})$ - temperature, ϵ_{ii} - elastic strain tensor, ∝ – scalar damage parameter

Energy balance

dU

$$\frac{dU}{dt} = \frac{d}{dt} (F + TS) = \frac{1}{\rho} \sigma_{ij} e_{ij}$$

$$\frac{dS}{dt} = -\nabla_{ij} \left(\frac{J_{ij}}{J_{ij}} \right) + \Gamma$$

Gibbs equation

Entropy balance

$$\frac{dt}{dt} = -V_{i} \left(\frac{\dot{T}}{T}\right) + I$$

$$dF = -SdT + \frac{\partial F}{\partial \varepsilon_{ij}} d\varepsilon_{ij} + \frac{\partial F}{\partial \alpha}$$

The internal entropy production rate per unit mass, Γ , is:

$$\Gamma = -\frac{J_{i}}{\rho T^{2}} \nabla_{i} T + \frac{1}{T} \sigma_{ij} e_{ij} - \frac{1}{T} \frac{\partial F}{\partial \alpha} \frac{d\alpha}{dt} \ge 0$$

<u>ල</u>

Aftershocks: 1D analytical results for uniform deformation

For 1D deformation, the equation for positive damage evolution is

$$d\alpha/dt = C_d (\varepsilon^2 - \varepsilon_0^2), \tag{1}$$

where ϵ is the current strain and ϵ_0 separates degradation from healing. The stress-strain relation in this case is

$$\sigma = 2\mu_0(1-\alpha)\epsilon, \tag{2}$$

where $\mu_0(1\!-\!lpha)$ is the effective elastic modulus of a 1D damaged material with μ_0 being the initial modulus of the undamaged solid.

analytically that these equations lead under constant stress loading to a power law time-tofailure relation with exponent 1/3 for a system-size brittle event). showed [2002] Lyakhovsky (Ben-Zion and

For positive rate of damage evolution $(\epsilon > \epsilon_0)$, we assume inelastic strain before macroscopic failure in the form

$$\mathbf{e} = (\mathbf{C}_{\mathbf{v}} \, \mathrm{d}\alpha/\mathrm{d}t) \, \mathbf{\sigma}$$

For aftershocks, we consider material relaxation following a strain step. a situation with a boundary conditions t constant total strain. corresponds

In this case the rate of elastic strain relaxation is equal to the viscous strain rate,

$$2d\varepsilon/dt = -e$$

Using this condition in (2) and (3) gives
$$\frac{d\epsilon}{dt} = -C_{\nu}\mu_{0}(1-\alpha)\cdot\epsilon\frac{d\alpha}{dt}$$
 (5) and integrating (5) we get $\epsilon = A\cdot\exp\left[\frac{1}{2}R(1-\alpha)^{2}\right]$ (6)

and integrating (5) we get

4

(2)

where $R = \tau_{\rm d}/\tau_{\rm M} = \mu_0 C_{\rm v}$ and $A = \varepsilon_s \cdot \exp\left[-\frac{1}{2}R(1-\alpha_s)^2\right]$ is integration constant with α = $\alpha_{\rm s}$ and ϵ = $\epsilon_{\rm s}$ for t = 0.

Using these results in (1) yields exponential damage evolution

$$\frac{d\alpha}{dt} = C_d \cdot \left\{ \varepsilon_s^2 \exp\left[R(1 - \alpha)^2 - R(1 - \alpha_s)^2 \right] - \varepsilon_0^2 \right\}$$
 (7)

Scaling the results to number of events N

Assuming that lpha is scaled linearly with the number of aftershocks $oldsymbol{N}$

$$lpha=lpha_s+\phi N$$

(8)

$$\phi \frac{dN}{dt} = C_d \cdot \left\{ \varepsilon_s^2 \exp \left[R(1 - \alpha_s - \phi N)^2 - R(1 - \alpha_s)^2 \right] - \varepsilon_0^2 \right\}$$
 (9)

If ϕN is small (generally true), so that $(\phi N)^2$ can be neglected

$$\phi \frac{dN}{dt} = C_d \cdot \left\{ \boldsymbol{\varepsilon}_s^2 \exp[-2\phi NR(1 - \alpha_s)] - \boldsymbol{\varepsilon}_0^2 \right\}$$

(10)

If also the initial strain induced by the mainshock is large enough so that

$$arepsilon_0^2 << arepsilon_s^2 \exp[-2\phi NR(1-lpha_s)]$$

the solution is (the modified Omori law)

(11)

$$\frac{dN}{dt} = \frac{C_d \varepsilon_s^2}{2\phi R (1 - \alpha_s) C_d \varepsilon_s^2 t + \phi}$$

$$t = 2\phi R(1 - \alpha_s) C_d \varepsilon_s^2 t + \phi \tag{12}$$

For
$$t=0$$
 $\dot{N}_0=\frac{C_d \mathcal{E}_s^2}{\hbar}$

so
$$\frac{dN}{dt} = \frac{\dot{N}_0}{2\phi R(1-\alpha_s)\dot{N}_0 t + 1} = \frac{\dot{N}_0}{2\phi R(1-\alpha_s)\dot{N}_0} \cdot \frac{1}{t + 1/2\phi R(1-\alpha_s)\dot{N}_0}$$

(13)

The parameters of the modified Omori law are

 $dN/dt = K(c+t)^{-p}$

$$k = rac{1}{2\phi R ig(1-lpha_sig)} \ c = rac{1}{2\phi R ig(1-lpha_sig)\dot{N}_0} = rac{k}{\dot{N}_0}$$

and p=1

examine We now return to the general exponential equation (9) and exanalytical results first with ϵ_0 =0, α_s =0 and then with finite small values.

$$\phi \frac{dN}{dt} = C_d \cdot \left\{ \mathcal{E}_s^2 \exp \left[R(1 - \alpha_s - \phi N)^2 - R(1 - \alpha_s)^2 \right] - \mathcal{E}_0^2 \right\}$$
 (9)

Events rate vs. time for several values of $R= au_d/ au_M$ (with finite $\epsilon_0,lpha_s$) Timescale of fracturing Material property R

damage-related In each layer the strain is the sum of damage-elastic, $=\mathcal{E}_{ij}^{e}+\mathcal{E}_{ij}^{i}+\mathcal{E}_{ij}^{d}$ w W inelastic, and ductile components:

= regional stress + imposed mainshock slip on a fault extending over 50 km $\leq y \leq 150$ km, $0 \leq z \leq 15$ km with fixed boundaries Initial stress

40 °C/km - dotted line Strain rate = $10^{-15} 1/s$

transition at 300 °C Brittle-ductile

Computational Issues:

·FE simulations with moving Lagrangian mesh (FLAC algo), using tetrahedral elements (~500m in seismogenic zone and ~5km below). The range of the simulated events governed by numerical elements size, large scale model dimensions, size of the imposed mainshock, & rheological parameters.

•Quasi-static procedure with a dynamic weakening correction.

The size of the <u>largest event</u> is affected strongly by the dynamic weakening timescale $\tau_{\rm r}$

•Earthquake magnitudes are calculated from the empirical potency-magnitude relation:

Dynamic weakening

 $lpha_{dynamic} = lpha_{static} - \sqrt{ au_r} \dot{a}$

 $\log_{10} P_0 = 0.06M^2 + 0.98M - 4.87$

Simulations with fixed $\tau_r = 300 \ s$

gradient 20 °C/km) 1 km, П (sediment thickness œ Effects of

Power law frequency-size statistics Narrow range of event sizes Large R values (R > 3): Small R values (R < 1):

gradient 20 °C/km) Effect of Sediment thickness (R = 1,

diffuse sequences, shorter duration, smaller number of events (similar to increasing R values) Increasing thickness of weak sediments:

(sediment layer 1 and gradient Effect of thermal

The maximum event depth decreases with time from the mainshock thinner seismogenic zone Increasing thermal gradient and/or R:

Depth Evolution of Landers aftershocks (Rolandone et al., 2004) Observed

Depth of seismic-aseismic transition increases following Landers EQ and then shallows by ≤ 3 km over the course of 4 yrs.

tr for Båth law Analysis with variable

and aseismic components (degree of seismic coupling across a fault) The parameter R controls the partition of energy between seismic

The brittle (seismic) component of deformation can be estimated as

 $\sigma = 2\mu \cdot \varepsilon_{seis}$

The rate of gradual inelastic strain can

 $d\varepsilon_i/dt = -\dot{\alpha}C_v\sigma/2$

be estimated as

The inelastic strain accumulation (aseismic creep) is

_	$-\frac{1}{1+R}$
\mathcal{E}_{seis}	\mathcal{E}_{total}
Seismic slip	Total slip

	_			
Slip ratio	% 06	% 05	33 %	10%
K	0.1	I	2	10

Sup ratio	% 06	% 05	33 %	10%
V	0.1	_	2	10

Main Conclusions

governed by exponential rather than 1994; Kisslinger, also Dieterich, (see Aftershocks decay rate may believed Narteau et al., 2002) is commonly

timescale for brittle fracture evolution to viscous relaxation timescale. aftershocks behavior is the ratio R factor controlling The key

·The material parameter R increases with increasing heat and fluids, and is inversely proportional to the degree of seismic coupling.

Omori power law relation with hopprox1 , and have power law frequency size statistics. cases, fitted well by the with $R \le 1$, representing highly brittle sequences that can be fitted well by t = 1·Situations with aftershock

•Situations with R >> 1 , representing stable cases with low seismic coupling, & swarm-like behavior. produce diffuse aftershock sequences

of weak sedimentary cover produce results that are ·Increasing thickness of weak sedimentary similar to those associated with increasing R.

Thank you

Key References (on damage and evolution of earthquakes & faults):

Lyakhovsky, V., Y. Ben-Zion and A. Agnon, Distributed Damage, Faulting, and Friction, $\mathcal J$. Geophys. Res., 102, 27635-27649, 1997.

Ben-Zion, Y., K. Dahmen, V. Lyakhovsky, D. Ertas and A. Agnon, Self-Driven Mode Switching of Earthquake Activity on a Fault System, Earth Planet. Sci. Lett., 172/1-2, 11-21, 1999.

Lyakhovsky, V., Y. Ben-Zion and A. Agnon, Earthquake Cycle, Fault Zones, and Seismicity Patterns in a Rheologically Layered Lithosphere, *J. Geophys. Res.*, 106, 4103-4120, 2001

Hamiel, Y., *Liu, Y., V. Lyakhovsky, Y. Ben-Zion and D. Lockner, A Visco-Elastic Damage Model with Applications to Stable and Unstable fracturing, *Geophys. J. Int.*, 159, 1155-1165, doi: 10.1111/j.1365-246X.2004.02452.x, 2004.

Ben-Zion, Y. and V. Lyakhovsky, Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults, *Pure Appl. Geophys.*, 159, 2385–2412, 2002

Seismogenic Zone Governed by Damage Rheology, submitted to Geophys. J. Int., 2005. Ben-Zion, Y. and V. Lyakhovsky, Analysis of Aftershocks in a Lithospheric Model with