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Reactor Core :
• D = 3.5 m
• H = 8-10m
• 100,000 pebbles
• d = 6 cm
• Q =1 pebble/min

MIT Technology Review  (2001)

MIT Modular Pebble-Bed Reactor
http://web.mit.edu/pebble-bed



Experiments and Simulations

Half-Reactor Model
Kadak & Bazant (2004)
Plastic or glass beads

Quasi-2d Silo
Choi et al., Phys. Rev. Lett. (2003)
Choi et al., Granular Matter (2005)
d=3mm glass beads
Digital-video particle tracking near wall 

MIT Dry Fluids Lab
http://math.mit.edu/dryfluids

3d Discrete Elements
(“Molecular Dynamics”)
Sandia parallel code from Gary Grest
Rycroft, Bazant, Landry, Grest (2005)
Frictional, viscoelastic spheres
N=400,000



“Kinematic Model” for the Mean Velocity in a Silo
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Green function = point opening
Parabolic streamlines

Nedderman & Tuzun, Powder Tech.  (1979)
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  Choi, Kudrolli & Bazant, J. Phys. A: Condensed Matter  (2005).

What is “diffusing”?



Microscopic Flow Mechanisms
for Dense Amorphous Materials

1. “Vacancy” mechanism for flow 
    in viscous liquids (Eyring, 1936);
    Also: “free volume” theories of glasses  
     (Turnbull & Cohen 1958, Spaepen 1977,…)

2. “Void” model for granular drainage
     (Litwiniszyn 1963, Mullins 1972)

3. “Spot” model for random-packing dynamics
     (M. Z. Bazant, Mechanics of Materials 2005)

4. “Localized inelastic 
     transformations”
    (Argon 1979, Bulatov & Argon 1994)
   
    “Shear Transformation Zones”
    (Falk & Langer 1998, Lemaitre 2003)



DEM Spot Model Void Model

Simulations by Chris Rycroft

Simple spot model predicts mean flow and tracer diffusion in silo drainage
fairly well (with only 3 params), but does not enforce packing constraints.



Correlations Reduce Diffusion

• Volume conservation (approx.)

Simplest example: A uniform spot affects N particles.

• Particle diffusion length

Experiment:  0.0025    DEM Simulation:  0.0024    (some spot
overlap)



Direct Evidence for Spots
Spatial correlations in velocity fluctuations

EXPERIMENTS  SIMULATIONS
• MIT Dry Fluids Lab
• 3mm glass beads, slow flow (mm/sec)
• particle tracking by digital video
• 125 frames/sec, 1024-1024 pixels
• 0.01d displacements (near wall)

• 3d molecular dynamics (discrete elements)
• Sandia parallel code on 32-96 processors
• Friction, Coulomb yield criterion 
• Visco-elastic damping
• Hertzian or Hookean contacts

(like “dynamic hetrogeneity” in glasses)



“Multi-scale” Spot Algorithm
1. Simple spot-induced motion

• Apply the usual spot displacement first to all
particles within range



• Apply a relaxation step to all particles within a larger radius
• All overlapping pairs of particles experience a normal

repulsive displacement (soft-core elastic repulsion)
• Very simple model - no “physical” parameters, only geometry.

“Multi-scale” Spot Algorithm
2. Relaxation by soft-core repulsion



• Mean displacements are mostly determined by basic spot
motion (80%), but packing constraints are also enforced

• Can this algorithm preserve reasonable random packings?
• Will it preserve the simple analytical features of the

model?

“Multi-scale” Spot Algorithm
3. Net cooperative displacement



Spot Model                    DEM
3d Multiscale Model
   Rycroft, Bazant, Landry, Grest (2005)

 Infer 3 spot parameters
from DEM, as from expts:

  * radius = 2.6 d

  * volume = 0.33 v

  * diffusion length = 1.39
d

 Relax particles each step
with soft-core repulsion

 “Time” = number of
drained particles

 Very similar results as
DEM, but >100x faster

 How might spot
dynamics follow from
mechanics in more general
situations?



Classical Mohr-Coulomb Plasticity
1. Theory of Static Stress in a Granular Material

Assume “incipient yield” everywhere: 

                  (τ/σ)max = µ  

µ= internal friction coefficient
φ= internal failure angle = tan-1µ

2. Theory of Plastic Flow (only in a wedge hopper!)

ε = π/4−φ/2

Levy flow rule / Principle of coaxiality:

Assume equal, continuous slip
along both incipient yield planes
(stress and strain-rate tensors have same eigenvectors) 



Silo bottom

Free surface

Exit

Failures of Classical Mohr-
Coulomb Plasticity to Describe

Granular Flow
1. Stresses must change from active to 
   passive at the onset of flow in a silo
    (to preserve coaxiality).

“Passive” (side-wall-driven flow)

“Active” (gravity-driven stress)

2. Walls produce complicated velocity and stress discontinuities 
    (“shocks”) not seen in experiments with cohesionless grains.
3. No dynamic friction
4. No discreteness and randomness in a “continuum element”



Spot

Slip lines

Stochastic “Flow Rule”

2ε

d

D

Spots random walk along 
Mohr-Coloumb slip lines
(but not on a lattice) 

Idea (Ken Kamrin):
Replace coaxiality with
an appropriate discrete
spot mechanism

Similar ideas in lattice models for glasses:
Bulatov and Argon (1993), Garrahan & Chandler (2004)



A Simple Theory of Spot Drift
Spot = localized failure where µ is replaced by µk (static to dynamic friction)

Net force on the particles
affected by a spot

A spot’s random walk is biased by this force projected along slip lines.

Next derive a Fokker-Planck equation for particle drift and diffusion
which depends non-locally on the spot distribution in space (and time?)…

(Assume quasi-static global stress 
distribution is unaffected by spots.)



Coette cell with a rotating rough inner wall: Predicts shear localization

Gravity-driven drainage from a wide quasi-2d silo: Predicts the kinematic model

A General Theory of Dense Granular Flow?

Slip lines and spot drift vectors Mean velocity profile



Conclusion

For papers, movies,…   http://math.mit.edu/dryfluids

• “Spot model” = precise, simple
mechanism for the dynamics of
dense random packings

• Random walk of spots along slip
lines yields “stochastic flow rules”
for continuum plasticity

• Stochastic Mohr-Coulomb
plasticity seems capable of
predicting different granular flows

• Interactions between spots? 
  Extend to 3d, other materials,…?



Characteristics
(the slip-lines)

Mohr-Coulomb Stress Equations (assuming incipient yield everywhere)

ε = π/4−φ/2



•  Spot drift opposes the net material force.
•  Spots drift through slip-line field constrained only by the geometry of the
slip-lines. Probability of motion along a slip-line is proportional to the
component of –Fnet in that direction.  Yields drift vector:

•  For diffusion coefficient D2, must solve for the  unique probability
distribution over the four possible steps which generates the drift vector
and has forward and backward drift aligned with the drift direction.

D1



A Nonlocal Stochastic
Differential Equation
for Tracer Diffusion

Random Riemann sum of random variables:

w  =  spot influence function



A Mean-field Fokker-Planck Equation

• Poisson process for spot positions
• Independent spot displacements 

Drift velocity

Diffusivity tensor


