Radiogenic Isotope Systematics and Noble Gases

Sujoy Mukhopadhyay
CIDER 2006
What I will not cover…..

U-Th-Pb systematics

\[
\frac{^{206}Pb}{^{204}Pb} = \frac{^{206}Pb}{^{204}Pb}_o + \frac{^{238}U}{^{204}Pb} e^{\lambda_{238}t - 1}
\]

\[t_{1/2} = 4.5 \text{ Ga}\]

\[
\frac{^{207}Pb}{^{204}Pb} = \frac{^{207}Pb}{^{204}Pb}_o + \frac{^{235}U}{^{204}Pb} e^{\lambda_{235}t - 1}
\]

\[t_{1/2} = 0.7 \text{ Ga}\]

\[
\frac{^{208}Pb}{^{204}Pb} = \frac{^{208}Pb}{^{204}Pb}_o + \frac{^{232}Th}{^{204}Pb} e^{\lambda_{232}t - 1}
\]

\[t_{1/2} = 14 \text{ Ga}\]

More on this system in the next lecture by Stan………..
Rb-Sr and Sm-Nd systematics

\[87^{\text{Rb}} \xrightarrow{\beta \text{ decay}} 87^{\text{Sr}} \]

\[147^{\text{Sm}} \xrightarrow{\alpha \text{ decay}} 143^{\text{Nd}} \]

- \(P_r \) is radioactive parent
- \(D_r \) is daughter produced from radioactive decay of \(P_r \)
- \(D_s \) is stable isotope of \(D_r \) and not produced by radioactive decay
- \(\lambda \) is the decay constant

\[
\frac{dP}{dt} = -\lambda P
\]

\[
D_r = P(e^{\lambda t} - 1)
\]

\[
\begin{pmatrix} D_r \\ D_s \end{pmatrix}_{\text{today}} = \begin{pmatrix} D_r \\ D_s \end{pmatrix}_{\text{initial}} + \begin{pmatrix} P_r \\ D_s \end{pmatrix}_{\text{today}} (e^{\lambda t} - 1)
\]

- Stable non-radiogenic reference isotope for Nd is \(144^{\text{Nd}} \).
- Stable non-radiogenic reference isotope for Sr is \(86^{\text{Sr}} \).
The ε notation for Sm-Nd

$$
\varepsilon_{Nd}(t) = \left[\frac{\left(\frac{^{143}Nd}{^{144}Nd}\right)_{\text{sample}}}{\left(\frac{^{143}Nd}{^{144}Nd}\right)_{\text{CHUR}}} - 1 \right] \times 10^4
$$

CHUR stands for \textit{chondritic uniform reservoir}, and represents the evolution of a bulk solar system Sm/Nd ratio and initial $^{143}Nd/^{144}Nd$.
Samarium – Neodymium (147Sm-143Nd; $t_{1/2} = 106$ G.y) and Rubidium-Strontium systematics (87Rb-87Sr; $t_{1/2} = 48.8$ G.y) Sm, Nd, Rb, and Sr are *lithophile* and incompatible.

![Element Periodic Table and Diagram](image-url)
Melt (crust) → Residue (depleted mantle) → Parcel of mantle partially melts

\[(Rb/Sr)_{\text{melt}} > (Rb/Sr)_{\text{mantle}} > (Rb/Sr)_{\text{residue}}\]

\[87\text{Rb} \rightarrow 87\text{Sr}\]

\[(Sm/Nd)_{\text{melt}} < (Sm/Nd)_{\text{mantle}} < (Sm/Nd)_{\text{residue}}\]

\[147\text{Sm} \rightarrow 143\text{Nd}\]

\[
\begin{align*}
\frac{87\text{Sr}}{86\text{Sr}} & \quad \text{crust} \\
\frac{143\text{Nd}}{144\text{Nd}} & \quad \text{residue}
\end{align*}
\]

Melting event → Bulk Earth

Time:

4.5 Ga → Today
Rb-Sr system: The tree of life

\[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} \]

4.5 Ga Today

Bulk Earth

Melting event

crust

residue

\[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} \text{ versus Time} \]
Hofmann, 1997
Nature 385: 219-229
Isotopic differences between OIBs and MORBs
An issue of sampling lengthscales?

Kellogg et al., 2002
Equations derived in Kellogg et al., 2002

Also see DePaolo 1983 and Jacobsen 1988
\[
\frac{dM_j(t)}{dt} = \sum_{k=1}^{n_{res}} [\dot{M}_{kj}(t) - \dot{M}_{jk}(t)]
\]

\[
\frac{dN_{sj}(t)}{dt} = \sum_{k=1}^{n_{res}} [\dot{M}_{kj}(t)d_{skj}C_{sk}(t) - \dot{M}_{jk}(t)d_{sjk}C_{sj}(t)]
\]

\[
\frac{dN_{rj}(t)}{dt} = \sum_{k=1}^{n_{res}} [\dot{M}_{kj}(t)d_{rkj}C_{rk}(t) - \dot{M}_{jk}(t)d_{rjk}C_{rj}(t)] - \lambda_{r}N_{rj}(t)
\]

\[
\frac{dN_{dj}(t)}{dt} = \sum_{k=1}^{n_{res}} [\dot{M}_{kj}(t)d_{skj}C_{dk}(t) - \dot{M}_{jk}(t)d_{sjk}C_{dj}(t)] + \lambda_{r}N_{rj}(t)
\]

- \(\dot{M} \) is the mass transport
- \(C \) is the concentration
- \(R \) is radioactive parent
- \(D \) is the stable daughter isotope produced by radioactive decay
- \(S \) indicates stable reference isotope
- \(D_i \) is the decay constant
Equations derived in Kellogg et al., 2002

Also see DePaolo 1983 and Jacobsen 1988
Stirring effect
Effect of sampling and stirring time scale

Kellogg et al., 2002
The MORB distribution is reproduced by the Model OIB distribution. However, Model OIB fails to capture the real distribution.
He isotope geochemistry

• Two isotopes of helium: 3He and 4He
 3He is primordial
 4He produced by radioactive decay of U and Th

\[
\frac{^4\text{He}}{^3\text{He}} = \left(\frac{^4\text{He}}{^3\text{He}} \right)_o + 8 \frac{^238\text{U}}{^3\text{He}} (e^{\lambda_{238}t} - 1) + 7 \frac{^235\text{U}}{^3\text{He}} (e^{\lambda_{235}t} - 1) + 6 \frac{^232\text{Th}}{^3\text{He}} (e^{\lambda_{232}t} - 1)
\]

• Helium behaves as an incompatible element during mantle melting (i.e. prefers melt over minerals)

• Helium *expected* to be more incompatible than U and Th during mantle melting

• Helium not recycled back into the mantle

If so high 3He/4He ratios reflect less degassed mantle material
Partitioning of Helium during mantle melting

Parman et al., 2005
Histogram of He isotope ratios in mid-ocean ridge basalts (MORBs)

• 3He/4He ratios reported relative to the atmospheric ratio of 1.39×10^{-6}

• No relation between isotopic composition and spreading rate but the variance is inversely related to spreading rate

• Either reflects
 - efficiency of mixing in the upper mantle
 - differences in degree of magma homogenization
Comparison of He isotope ratios from selected MORs, OIBs, and continental hotspots

- The mean 3He/4He ratio from different ridge segments are nearly identical although the variance is different
- OIBs are much more variable
- 3He/4He ratios less than MORBs are frequently associated with radiogenic Pb (HIMU) and reflects recycled components in the mantle

After Barford, 1999
He isotope ratios in ocean island basalts (OIBs)

- OIBs display a very large range in He isotopic composition
- He isotopic distribution has a double-peak; maxima at $8 \ R_A$ and $13 \ R_A$
- The first maxima is identical to the mean from MORBs - Clear indication of the involvement of depleted mantle in ocean island volcanism

MORBs: sample well-mixed degassed mantle with low $^3\text{He}/\text{U+Th}$
OIBs: sample heterogeneous, less degassed mantle with high $^3\text{He}/\text{U+Th}$
Geochemistry of Ne

- Neon has three isotopes ^{20}Ne, ^{21}Ne, and ^{22}Ne
- ^{20}Ne is primordial
- ^{21}Ne is produced by nucleogenic reactions in the mantle:
 - $^{18}\text{O}(\alpha, \text{n})^{21}\text{Ne}$ and $^{24}\text{Mg}(\text{n}, \alpha)^{21}\text{Ne}$
 - α from U decay; neutrons from spontaneous fission Production ratio of $^{21}\text{Ne}/^{4}\text{He}$ is $\sim10^{-7}$
- ^{22}Ne is primordial. There may be a small nucleogenic production of ^{22}Ne, $[^{19}\text{F}(\alpha, \text{n})^{22}\text{Ne}]$ but it is likely to be negligible
- $^{20}\text{Ne}/^{22}\text{Ne}$ does not vary in the mantle derived rocks; $^{21}\text{Ne}/^{22}\text{Ne}$ does
- Ne is expected to be more incompatible than U and Th during mantle melting \Rightarrow low $^{21}\text{Ne}/^{22}\text{Ne}$ ratios reflect less degassed mantle material
Ne isotopic composition of mantle derived rocks

Mantle $^{20}\text{Ne}/^{22}\text{Ne}$ ratio is fixed; $^{21}\text{Ne}/^{22}\text{Ne}$ varies because of radiogenic ingrowth and varying degrees of degassing.

Different ocean islands have distinct $^{21}\text{Ne}/^{22}\text{Ne}$ ratios; either reflects varying amounts of MORB mantle addition to the OIB source(s) or different parts of the mantle have been degassed and processed to different degrees.
After Barford, 1999

\[\frac{^4\text{He}}{^3\text{He}} \]

Diagram showing the distribution of various geological features on a graph with axes labeled R/R_a.
HIMU Ne isotopic signature is not more radiogenic than MORBs
Mukhopadhyay and Parai (in prep)
Neon composition in the convective mantle

Ballentine et al., 2005
Geochemistry of Ar

• Three stable isotopes of Ar, 36Ar, 38Ar, 40Ar

• 36Ar and 38Ar are primordial

• 40Ar produced by radioactive decay of 40K

• Ar is expected to be more incompatible than K during mantle melting

• If so high 40Ar/36Ar reflects degassed mantle material
Geochemistry of Ar

- 1% Ar in the atmosphere
- Significant air contamination for Ar
- Even when $^{3}\text{He}/^{4}\text{He}$ ratios are as high as 30 R_Λ, $^{40}\text{Ar}/^{36}\text{Ar}$ ratios can be atmospheric

- $^{20}\text{Ne}/^{22}\text{Ne}$ ratio in the mantle does not vary
- Ar isotopic ratios in mantle derived rocks can be corrected for air contamination by extrapolating the $^{40}\text{Ar}/^{36}\text{Ar}$ ratio to the upper mantle $^{20}\text{Ne}/^{22}\text{Ne}$ value

Fig from Graham, 2002

Moreira et al., 1998
Geochemistry of Ar

- MORB mantle $^{40}\text{Ar}/^{36}\text{Ar}$ values are $\sim 40,000$
- OIBs have lower $^{40}\text{Ar}/^{36}\text{Ar}$ ratios; reasonable limit is 8000

- A value of 8000 does not represent pristine mantle material; must indicate some processing, although significantly less degassed than the mantle source sampled by MORBs
The picture that emerges so far……

1. MORBs are more homogenous compared to OIBs

2. Many OIBs sample a mantle source that is significantly less degassed than the mantle source tapped by MORBs
Evidence for undegassed reservoir: The missing Argon problem

- K content of Earth derived from the K/U ratio of 12700 in MORBs and U content of 20-22.5 ppb

- Implied K content of bulk Earth is 250-285 ppm

- Total 40Ar produced over Earth history = $140-156 \times 10^{18}$ g

- 40Ar in the atmosphere = 66×10^{18} g (~50%)

- 40Ar in the crust = $9-12 \times 10^{18}$ g

 63-80 $\times 10^{18}$ of 40Ar has to be in the mantle
Evidence for undegassed reservoir: The missing Argon problem

Constraints from 40Ar flux

- 4He flux at ridge = 9.46×10^7 moles/yr
- 4He/40Ar ratio in MORBs 2-15
 => 40Ar flux $0.63-5 \times 10^7$ moles/yr
- Mass of oceanic lithosphere passing through ridges = 5.76×10^{17} g/yr

 If MORB mantle representative of entire mantle and if lithosphere completely degassed, 40Ar content in mantle $1.4-1.8 \times 10^{18}$g

 Lower than the $63-81 \times 10^{18}$g estimated (Allegre et al., 1996) and requires a hidden reservoir for 40Ar

If MORB mantle extends to 670 km, $0.6-4.6 \times 10^{18}$ g of 40Ar in upper mantle and 59×10^{18}g of 40Ar in the lower mantle, corresponding to a K concentration of about 230ppm; consistent with K content of bulk Earth
Relationship between He and other lithophile tracers

Relationship between He and other lithophile tracers

- He isotopic variations are strongly coupled to variations in other lithophile tracers (Sr, Nd, Pb)

- Higher $^{3}\text{He}/^{4}\text{He}$ ratios are associated with less depleted $^{87}\text{Sr}/^{86}\text{Sr}$ isotopic signal

\Rightarrow high $^{3}\text{He}/^{4}\text{He}$ ratios are indicative of less degassed mantle

Above data is from the 3 km deep drill hole from Mauna Kea, Hawaii (Kurz et al., 2004)
Global relationship between He and other lithophile tracers:
The wormograms, hartworms, harrtubes.........

Heavy oxygen isotopic composition

Ballentine et al., 2002
Let's look at Hawaii in a little more detail......

The two trends intersect quite far from FOZO

Nothing seems to be mixing with FOZO directly
Consistent with recent Samoa data (talk to Matt Jackson)
Global relationship between He and other lithophile tracers

Inferences:

- High $^{3}\text{He}/^{4}\text{He}$ ratios from a single, relatively undegassed mantle source that is characterized by well defined Sr, Nd, and Pb isotopic composition

- $^{3}\text{He}/^{4}\text{He}$ is one of the reasons to come up with a component (PHEM, FOZO, C) that is internal to the other mantle end-members in Sr, Nd, and Pb isotopic space (EM1, EM2 HIMU, DM)

- FOZO has Sr, Nd, Pb isotopic composition that is slightly depleted in comparison to primitive mantle; PHEM is primitive.
Noble Gas Concentrations

- Previously noted that based in the curvature of mixing hyperbolas He concentrations might be higher in MORBs than OIBs

- The figures show that is indeed the case

- Maybe not too surprising since most OIBs are erupted at shallower water depths than MORBs; so would be degassed more

- Is such an explanation tenable?

Honda and Patterson, 1999
Noble gas elemental ratios

He more soluble in basaltic melt than Ne, which is more soluble than Ar
=> With increasing degassing He/Ne ratios increase and Ne/Ar ratios increase
Solubility controlled degassing does not explain the differences in gas concentration between MORBs and OIBs.
Solubility as a function of H₂O-CO₂

Nuccio and Paonita, 2000
Summary statements

- From $^{3}\text{He}/^{4}\text{He}$, $^{21}\text{Ne}/^{22}\text{Ne}$, and $^{40}\text{Ar}/^{36}\text{Ar}$ ratios we know there exists a relatively undegassed reservoir in the Earth that is tapped at many ocean islands; MORBs sample a more degassed and processed mantle source.

- An reservoir that is less degassed than the MORB source is supported by ^{40}Ar

- Based on correlations between $^{3}\text{He}/^{4}\text{He}$ ratios and other isotopic tracers (Sr, Nd, Pb), the undegassed reservoir has a composition depleted relative to primitive mantle; the depletion is consistent with the inferred $^{40}\text{Ar}/^{36}\text{Ar}$ ratio of ~ 8000 for the OIB source